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Abstract

Leveraging wearable devices for motion reconstruction has
emerged as an economical and viable technique. Certain
methodologies employ sparse Inertial Measurement Units
(IMUs) on the human body and harness data-driven strategies
to model human poses. However, the reconstruction of mo-
tion based solely on sparse IMUs data is inherently fraught
with ambiguity, a consequence of numerous identical IMU
readings corresponding to different poses. In this paper, we
explore the spatial importance of multiple sensors, super-
vised by text that describes specific actions. Specifically, un-
certainty is introduced to derive weighted features for each
IMU. We also design a Hierarchical Temporal Transformer
(HTT) and apply contrastive learning to achieve precise tem-
poral and feature alignment of sensor data with textual se-
mantics. Experimental results demonstrate our proposed ap-
proach achieves significant improvements in multiple metrics
compared to existing methods. Notably, with textual supervi-
sion, our method not only differentiates between ambiguous
actions such as sitting and standing but also produces more
precise and natural motion.

Introduction
Human motion reconstruction is a pivotal technique for ac-
curately capturing 3D human body kinematics, with critical
applications in gaming, sports, healthcare, and film produc-
tion. One of the prevalent methods in motion reconstruction
is the optical-based approach, which involves analyzing im-
ages of individuals to ascertain their respective poses (Chen
et al. 2020; Sengupta, Budvytis, and Cipolla 2023; Cao et al.
2017). With the rapid progression of wearable techniques,
various sensor devices have also been used to reconstruct
human motion. For example, Xsens (Schepers et al. 2018)
system employs 17 densely positioned IMUs to facilitate
the reconstruction of human body poses. Compared to op-
tical methods, IMUs offer robustness against variable light-
ing conditions and occlusions, allow for unrestrained move-
ment in both indoor and outdoor environments, and enable
the generation of naturalistic human motion. However, the
dense placement of wearable IMUs on the body can be in-
trusive and costly.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Considering specific postures such as standing and
sitting, the rotational data and acceleration output by the sen-
sors are largely invariant. Incorporating additional informa-
tion such as text can help to address this challenge.

To address this issue, some methods (Huang et al. 2018;
Yi, Zhou, and Xu 2021; Jiang et al. 2022b; Von Marcard
et al. 2017; Yi et al. 2022) have deployed sparse IMUs on the
body and analyzed temporal signals to model human body
poses. These approaches not only reduce the number and
cost of IMUs but also enhance the wearability and minimize
invasiveness. Nevertheless, it should be noted that there are
still some limitations that restrict the utilization of sparse
sensors. Specifically, motion reconstruction using sparse in-
ertial sensors constitutes an under-constrained problem: dis-
tinct postures can yield identical sensor outputs. As illus-
trated in Fig. 1, the sensors generate similar rotation matri-
ces and acceleration outputs when the subject is sitting and
standing, making accurate differentiation between these pos-
tures challenging. Besides, the inherent distinction of spatial
relations between IMUs, has rarely been used in previous
methods, thereby revealing opportunities for potential en-
hancements.

In this paper, we introduce a novel framework for sensor-
based 3D human motion reconstruction, leveraging spatial
relationships and textual supervision to accurately gener-
ate naturalistic human body poses. Sparse sensors are de-
signed to capture the motion characteristics of different body
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parts. Considering that the correlations among these features
contain a crucial priori knowledge about the human body’s
skeletal structure, our method employs intra-frame spatial
attention to model the correlation between IMUs, allowing
the model to concentrate on the distinct characteristics of
different body regions at one point in time. Moreover, in re-
sponse to the inherent potential instability of IMU readings,
the concept of sensor uncertainty is introduced. This allows
for the optimization of sensor outputs and the adaptive ad-
justment of each sensor’s relative contribution. However, re-
lying solely on sensor data is insufficient for resolving the
problems of ambiguity. Text, with its rich motion informa-
tion, can aid the model in identifying human motion states
and resolving issues of ambiguity. Finally, to facilitate better
modality fusion, we propose unique modules to align sensor
features with text features in both temporal and semantic di-
mensions.

In the realm of sensor data and text fusion, IMU2CLIP
(Moon et al. 2022) bears resemblance to our work, align-
ing images and IMU sensor data with corresponding text
using the CLIP (Radford et al. 2021). The methodologies
diverge in several key respects. IMU2CLIP is designed for
modality transitivity, facilitating text-based IMU retrieval,
IMU-based video retrieval, and natural language reasoning
tasks with motion data. In contrast, our approach under-
scores the synergistic potential of multimodal information,
using text to resolve ambiguities inherent in sparse sensor
data. Furthermore, to achieve enhanced modality fusion, the
Hierarchical Temporal Transformer module was designed,
and contrastive learning was employed to ensure temporal
and semantic synchronization between the textual and sen-
sor data. Cross-attention mechanisms were then utilized to
merge features from both modalities. Experimental results
show that our proposed framework achieves state-of-the-art
performance compared with some classical methods, both in
quantitative and qualitative measurements.

In summary, our work makes the following contributions:

• We present a sensor-based approach to 3D human mo-
tion reconstruction that is augmented with textual super-
vision. This method leverages the rich semantic informa-
tion contained within the text to enhance the naturalness
and precision of the modeled human poses.

• We introduce a spatial-relation representation model
which computes the correlations between sensors within
a frame while also taking into account the uncertainty of
each IMU.

• We design a Hierarchical Temporal Transformer module
to achieve temporal alignment between sensor features
and textual semantics. A contrastive learning mechanism
is also adopted to optimize the alignment between the
two modalities in high-dimensional space.

Related Work
Sensor-based Human Motion Reconstruction
Full-body sensor-based motion reconstruction is a widely
utilized technique in commercial motion capture systems.
A prominent example is the Xsens system (Schepers et al.

2018), which achieves detailed reconstruction of human
movements by equipping the body with 17 strategically
placed IMUs. However, this method presents drawbacks,
primarily its invasive impact on human movement due to the
intensive IMUs placement, as well as its substantial cost.

Efforts have been made to implement motion reconstruc-
tion using sparse IMUs, thereby enhancing the usability
of inertial sensor-based motion reconstruction, albeit at the
expense of some degree of accuracy. For instance, stud-
ies (Slyper and Hodgins 2008; Tautges et al. 2011) have
achieved human motion reconstruction with as few as four
to five accelerometers, by retrieving pre-recorded postures
with analogous accelerations from motion reconstruction
databases. (Von Marcard et al. 2017) developed an offline
system that operates with only six IMUs, optimizing the pa-
rameters of the SMPL body model (Loper et al. 2015) to fit
sparse sensor inputs. With the advent of the deep learning
era, (Huang et al. 2018) synthesized inertial data from an
extensive human motion dataset to train a deep neural net-
work model based on a Bidirectional Recurrent Neural Net-
work that directly mapped IMU inputs to body postures. (Yi,
Zhou, and Xu 2021) decomposed body posture estimation
into a multi-stage task to improve the accuracy of posture
regression through the use of joint locations as an interme-
diate representation. Moreover, recent methodologies such
as (Dittadi et al. 2021) and AvatarPoser (Jiang et al. 2022a)
estimated full-body posture using only head and hand sen-
sors, yielding promising results.

However, reconstructing human motion from a set of
sparse IMUs presents an under-constrained problem, where
similar sensor readings may correspond to different pos-
tures. Some approaches have sought to address this issue
to a certain extent through unique network designs. For in-
stance, Physical Inertial Poser (Yi et al. 2022) approximated
the under-constrained problem as a binary classification task
between standing and sitting, proposing a novel RNN initial-
ization strategy to replace zero initialization. It then distin-
guished between standing and sitting based on instantaneous
acceleration. Transformer Inertial Poser (Jiang et al. 2022b)
introduced past history outputs as inputs to differentiate am-
biguous actions. Other methodologies have explored the in-
tegration of multimodal information to impose additional
constraints on the model, enhancing the generation of pre-
cise poses. For instance, studies (Von Marcard et al. 2018;
Malleson et al. 2017; Von Marcard, Pons-Moll, and Rosen-
hahn 2016) have significantly improved estimation accu-
racy by combining inertial sensors with video data, although
challenges such as occlusion, lighting issues, and mobility
restrictions still persist. Fusion Poser (Kim and Lee 2022)
incorporates head height information from a head tracker
into the model’s input.

Textual Semantics in Human Motion Field
In the burgeoning field of multimodal processing, text, with
its rich semantic information and ease of annotation, is in-
creasingly utilized in the human motion domain. Studies
such as (Guo et al. 2022; Zhang et al. 2022; Tevet et al.
2022) can generate high-quality 3D human motions from
textual descriptions. These findings affirm that texts encap-
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Figure 2: Overview of our method. Our model encapsulates three distinct encoders: a Text Encoder, a Sensor Encoder, and
a Text-Sensor Fusion Module. The details of the Sensor Encoder and the Hierarchical Temporal Transformer module are
illustrated on the right. The schematic of the model output is adapted from (Punnakkal et al. 2021).

sulate rich motion information. We posit that text supervi-
sion could disambiguate actions, thereby enhancing the nat-
uralness and precision of generated motions.

Method
Our primary target is to reconstruct accurate human poses
using data from 6 IMUs placed on the legs, wrists, head,
and pelvis (root), coupled with textual supervision. The
sensors provide inputs in the form of tri-axial accelera-
tion, a ∈ R3, and rotation matrices, R ∈ R3×3. As il-
lustrated in Fig. 2, our framework consists of a Text En-
coder, a Sensor Encoder, and a Text-Sensor Fusion mod-
ule. The Text Encoder converts the input text W such as
[“receive ball with both hands”, ..., “transition”] into a se-
quence of embeddings: {W cls,W 1, ...,WN}, where W cls

represents the embedding of the [CLS] token, and N de-
notes the number of text labels. For the Sensor Encoder,
a motion sequence composed of sensor data frames Xt =
[(atroot, R

t
root), ..., (a

t
head, R

t
head)], t ∈ [1, T ] is encoded

into a sequence of embeddings that contain intra-frame spa-
tial relations: {O1, ..., OT }. Within the Text-Sensor Fusion
module, these spatial embeddings are then processed by
the Hierarchical Temporal Transformer to extract a unified
spatio-temporal fusion representation {F cls, F 1, ..., FT },
where F cls denotes the embedding of the [CLS] token. Be-
fore applying cross-attention in the fusion process, Text-
Sensor contrastive learning is strategically implemented to
refine the alignment between the unimodal representations
of the two modalities. Finally, a simple regression head is
employed to derive human pose rotational data q ∈ Rj×6

for j key points (with each rotation encoded by a 6D vec-
tor (Zhou et al. 2019)), the corresponding three-dimensional
position p ∈ Rj×3, and the root’s speed data s ∈ R3.

Text Encoder

We utilize the first 4 layers of the frozen CLIP (Radford et al.
2021) VIT/B32 text encoder, augmented with two additional
transformer layers, to form our Text Encoder. Specifically,
given a text label sequence W , it is initially tokenized and
mapped into a sequence of tokens W̃ using CLIP, with a
zero-initialized tensor prepended as the [CLS] token. It is
important to note that W provides two kinds of semantic la-
bels: sequence-level and frame-level labels, as defined in the
dataset configuration. For frame-level labels, despite each
frame having its own text description, they are largely repeti-
tive. For example, the label “walk” might apply continuously
over a series of frames. To mitigate computational load, only
non-repetitive frame-level texts are chronologically ordered
as inputs. For sequence labels, if the total number is less
than the threshold M , we use all sequence labels as in-
put. Otherwise, one-third of the labels are selected based
on their temporal information, specifically choosing those
that best match the sensor subsequence. To differentiate be-
tween sequence-level and frame-level labels, two learnable
group position embeddings G are developed for each. Ad-
ditionally, Sinusoidal Position Embeddings (Vaswani et al.
2017) P are utilized, with time information computed inde-
pendently for both the sequence and frame levels, accom-
modating their unique characteristics.

W
i
= W̃ i + P i +Gi, for i ∈ [1, N ] (1)

Then the processed features W and the [CLS] token are fed
into the self-attention layers to better extract textual seman-
tics.
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Figure 3: An illustration of window self-attention (left) and
shifted window self-attention (right).

Sensor Encoder

The Sensor Encoder captures the intricate relations within
sparse sensors via spatial modeling. It includes a resampling
strategy and a spatial attention mechanism, both guided by
estimated uncertainty for each IMU.

Uncertainty Estimation: First, we estimate the uncer-
tainty for each IMU reading, where the original IMU read-
ings, denoted by Xt ∈ R6×(3+3×3) are fed into an uncer-
tainty regression head, yielding uncertainty σt ∈ R72 for
each channel.

Uncertainty-guided Resampling: Rather than directly
using the original readings Xt, we resample IMU readings
denoted as X̃t from a Gaussian distribution N (Xt, σt), with
Xt as the mean and predicted uncertainty σt as the vari-
ance. This resampling method ensures that the values with
low uncertainty remain largely unchanged, while the values
with high uncertainty are resampled, thereby optimizing the
sensor data. Notably, the resampling procedure is only em-
ployed during the training. During inference, the uncertainty
is simply regressed for each channel, and the original sensor
readings Xt are utilized as X̃t. We apply the reparameter-
ization trick (Kingma and Welling 2022) for efficient gra-
dient descent by sampling ϵ ∼ N (0, 1) to compute X̃t as
follows: X̃t = Xt + σt · ϵ .

Uncertainty-guided Spatial Attention (UGSA): After
sampling the IMU readings for the t-th frame X̃t with cor-
responding uncertainty σt, we map X̃t to a 6×c feature em-
bedding Zt, where 6 represents the number of sensors and c
signifies the dimension of spatial features. We then conduct
self-attention (Vaswani et al. 2017) on Zt. It is noted that for
the computation of t-th frame’s attention between two sen-
sors, denoted as j and k, the uncertainty σt

k ∈ R12 (summed
over its 12 channels) of sensor k is taken into account by
dividing the attention score by it.

At
j,k =

(
Zt
jP

Q
) (

Zt
kP

K
)T

√
c ·

∑
σt
k

(2)

where PQ, PK ∈ Rc×c are the Query and Key projection
matrices. This unique alteration ensures that sensors with
high uncertainty contribute less when computing spatial cor-
relations. The output of the UGSA module for the t-th frame,
Ot, matches the input dimensions Zt ∈ R6×c. After flat-
tening Ot to R1×(C=6c), we concatenate the output vectors
from T frames to form O ∈ RT×C .

Text-Sensor Fusion Module
The Text-Sensor Fusion Module aligns and fuses bimodal
features. Specifically, we employ a Hierarchical Temporal
Transformer to acquire spatiotemporally fused sensor fea-
tures for temporal synchronization with text features. Subse-
quently, contrastive learning is used to align the multimodal
features in a high-dimensional space, followed by the appli-
cation of cross-attention for feature fusion.

Hierarchical Temporal Transformer (HTT): The HTT
module is utilized for temporal alignment between sensor
features and textual semantics. We hypothesized that infor-
mation derived from adjacent frames is pivotal for the es-
timation of the current frame pose. In response to this hy-
pothesis, window self-attention (W-SA) and shifted win-
dow self-attention (SW-SA) mechanisms are incorporated
to constrain the scope of attention computation, introduc-
ing a convolution-like locality to the process. Furthermore,
to integrate information from distant frames and thus extend
the receptive field, a patch merge operation is implemented.
This approach facilitates the extraction of sensor features at
diverse granularity levels and concurrently reduces the com-
putational complexity of the transformer from a quadratic to
a linear relationship with the sequence length.

Given a window size of I , a sensor sequence of length L
is divided into L

I non-overlapping subintervals. Local win-
dow attention computations are first performed within these
subintervals. To create interconnections between these non-
overlapping segments, we adopt a shifted window attention
module inspired by (Liu et al. 2021), enabling a new parti-
tioning method that enhances self-attention across segments.
The W-SA and SW-SA always appear alternately, constitut-
ing a Hierarchical Transformer Block as shown in the top-
right corner of Fig. 2.

A EB C D B C D AE

Mask

Mask

Mask

Mask

shifted window partition cycle shift

Figure 4: An efficient methodology for batch computation
of self-attention within the context of shifted window parti-
tioning.

When applying shifted window attention to temporal se-
quences, the window count increases from L

I to L
I + 1, re-

sulting in some windows being smaller than I . To address
this, we introduce a batch computation with a leftward cyclic
shift, depicted in Fig. 4. This shift can produce windows
with non-contiguous sub-windows. We tackle this by de-
signing a masking mechanism that restricts self-attention to
within each sub-window, maintaining the number of batched
windows and ensuring computational efficiency. After the
computation, the original sequence order is restored.

In the patch merge operation, each procedure consolidates
two adjacent tokens into one, effectively halving the to-
ken count and doubling each token’s dimensionality. These
transformed tokens are then fed into the subsequent stages.



Within the final stage, the patch merge is omitted, and tokens
are restored to their original count and dimensions through
linear projection and reshaping. Within a sensor sequence,
we map the output features F ∈ RT×C to a feature with
dimensions 1 × C, serving as the [CLS] token. This [CLS]
token, in conjunction with F , forms the cumulative output
{F cls, F 1, ..., FT }, which encompasses the spatio-temporal
features.

Feature Fusion: Given the sensor features
set {F cls, F 1, ..., FT } and the text features set
{W cls,W 1, ...,WN}, we apply contrastive learning to
align these features in a high-dimensional joint space,
utilizing the [CLS] tokens as anchors. Subsequently, the
sensor features are fused with textual features through
cross-attention. Corresponding group embeddings and
temporal position embeddings are designed for both textual
and sensor features.

Losses
We train our model with three objectives: uncertainty learn-
ing on the Sensor Encoder, Text-Sensor contrastive learning
on the unimodal encoders and recon loss on the Text-Sensor
Fusion module. The relevant equations are presented below.
The parameters δ, γ, λ, α, β are used to balance the different
loss weights.

Uncertainty Loss: We aim to estimate the uncertainty of
the input IMU data. Inspired by (Kendall and Gal 2017), we
set our uncertainty estimation loss as:

Lσ =
δ

T

T∑
t=1

(

∥∥∥∥∥ (qt − q̂t)∑6
j=1 σ

t
j

∥∥∥∥∥
2

+

∥∥∥∥∥ (pt − p̂t)∑6
j=1 σ

t
j

∥∥∥∥∥
2

+

6∑
j=1

∥∥σt
j

∥∥2)
(3)

The term σt
j denotes the uncertainty of the j-th sensor at the

t-th frame. The terms ||qt−q̂t||2 and ||pt−p̂t||2 represent the
squared discrepancies between the predicted and true values
of the joint rotation angles and the joint positions for the t-th
frame, respectively.

Contrastive Loss: We use text-sensor contrastive learn-
ing to learn better unimodal representations before fusion.
Given a batch of B text-sensor pairs, the model learns to
maximize the similarity between a sensor sequence and its
corresponding text while minimizing the similarity with the
other B − 1 texts in the batch, and vice versa.

Lcontrastive = − γ

2B

B∑
i=1

(H1 +H2) (4)

where

H1 = log
esi,i/τ∑B
j=1 e

si,j/τ
, H2 = log

esi,i/τ∑B
j=1 e

sj,i/τ
(5)

The si,j represents the similarity calculated by cosine
similarity between the i-th sensor sequence and the j-th text,
and τ is a learnable temperature parameter that controls the
concentration of the distribution.

Recon Loss: Our model is optimized to encapsulate mo-
tion characteristics by minimizing the L2 losses on joint ori-
entations q, joint locations p, and root speed s, as shown in

Equations (6) and (7).

Lrecon = λ ·D(q, q̂) + β ·D(p, p̂) + α ·D(s, ŝ) (6)

where

D(x, x̂) =
1

T

T∑
t=1

∣∣xt − x̂t
∣∣2 (7)

calculates the discrepancy between the model’s predicted
values xt and the true values x̂t for the t-th frame.

The full objective of our model is:

L = Lσ + Lcontrastive + Lrecon (8)

Experiment
Dataset Setting
Our experiment employed two types of data: sensor data
captured during human motion and the corresponding tex-
tual annotations.

We utilized the Babel dataset (Punnakkal et al. 2021)
for semantic annotations, which provides two levels of text
labels for around 43 hours of AMASS mocap sequences
(Mahmood et al. 2019): sequence labels describe the over-
all actions, while frame labels detail each action per frame.
For the DIP-IMU dataset (Huang et al. 2018), which lacks
Babel’s semantic annotations, we manually added sequence-
level labels, albeit less comprehensive.

Regarding the motion data, given the scarcity of real
datasets and the extensive data requirements inherent in deep
learning, we followed previous method (Jiang et al. 2022b)
and synthesized more diverse inertial data from the extensive
AMASS dataset. This enriched synthesized data, combined
with real data, was used for training. The configuration de-
tails of the motion datasets are as follows:

AMASS: The AMASS dataset unifies various motion re-
construction datasets. We synthesized a subset of AMASS,
incorporating the CMU, Eyes Japan, KIT, ACCAD, DFaust
67, HumanEva, MPI Limits, MPI mosh, and SFU datasets.

DIP-IMU: The DIP-IMU dataset comprises IMU read-
ings and pose parameters from approximately 90 minutes of
activity by 10 subjects. We reserved Subjects 9 and 10 ex-
clusively for evaluation and utilized the rest for training.

Totalcapture: The Totalcapture dataset (Trumble et al.
2017) comprises 50 minutes of motion captured from 5 sub-
jects. Following previous works, we used real IMU data for
evaluation, but ground truth and synthesized IMU readings
were still integrated into the training set. Due to missing se-
mantic annotations from Babel in some sequences, only 27
fully annotated sequences were utilized.

Metric
For a fair comparison, we adhered to the evaluation method-
ology previously used for (Yi, Zhou, and Xu 2021). We used
five metrics for pose evaluation: 1) SIP error, which mea-
sures the average global rotation error of the limbs in de-
grees; 2) Angular error, the average global rotation error of
all body joints, also in degrees; 3) Positional error, the av-
erage Euclidean distance error of all joints, with the spine
aligned, measured in centimeters; 4) Mesh error, the average



Totalcapture DIP-IMU
Method SIP Err (deg) Ang Err (deg) Pos Err (cm) Mesh Err (cm) Jitter (102m/s3) SIP Err (deg) Ang Err (deg) Pos Err (cm) Mesh Err (cm) Jitter (102m/s3)

SIP – – – – – 21.02 (±9.61) 8.77 (±4.38) 6.66 (±3.33) 7.71 (±3.80) 3.86 (±6.32)
DIP – – – – – 16.36 (±8.60) 14.41 (±7.90) 6.98 (±3.89) 8.56 (±4.65) 23.37 (±23.84)

Transpose 12.30(±5.90) 11.34 (±4.84) 4.85 (±2.63) 5.54 (±2.89) 1.31 (±2.43) 13.97 (±6.77) 7.62 (±4.01) 4.90 (±2.75) 5.83 (±3.21) 1.19 (±1.76)
Ours 7.92 (±4.38) 9.35 (±4.10) 3.70 (±2.03) 4.32 (±2.29) 1.74 (±1.55) 13.34 (±6.71) 8.33 (±4.70) 4.71 (±2.72) 5.75 (±3.29) 1.81 (±1.72)

Table 1: In offline settings, our method is evaluated against SIP, DIP, and Transpose on the Totalcapture and DIP-IMU datasets,
focusing on the assessment of body poses. The mean values, along with the standard deviations (enclosed in parentheses), for
the sip error, angular error, positional error, mesh error, and jitter error, are presented in the report. Bold numbers indicate the
best performing entries.

Totalcapture DIP-IMU
Method SIP Err (deg) Ang Err (deg) Pos Err (cm) Mesh Err (cm) Jitter (102m/s3) SIP Err (deg) Ang Err (deg) Pos Err (cm) Mesh Err (cm) Jitter (102m/s3)

DIP – – – – – 17.10 (±9.59) 15.16 (±8.53) 7.33 (±4.23) 8.96 (±5.01) 30.13 (±28.76)
PIP – – – – – 15.02 8.73 5.04 5.95 2.4
TIP 11.74(±6.75) 11.57(±5.12) 5.26(±3.00) 6.10(±3.44) 9.69(±6.68) 15.33(±8.44) 8.89(±5.04) 5.22(±3.32) 6.28(±3.89) 10.84(±6.87)

Transpose 13.65 (±7.83) 11.84 (± 5.36) 5.64 (± 3.42) 6.35 (± 3.70) 8.05 (±11.70) 16.68 (±8.68) 8.85 (± 4.82) 5.95 (± 3.65) 7.09 (± 4.24) 6.11 (±7.92)
Ours 9.67 (±5.12) 10.49 (± 4.55) 4.36 (± 2.37) 5.05 (± 2.69) 13.30 (±16.86) 14.18 (±7.14) 8.25 (± 4.45) 4.76 (± 2.76) 5.80 (± 3.26) 14.41 (±17.18)

Table 2: In online settings, our method is evaluated against DIP, PIP, TIP, and Transpose on the Totalcapture and DIP-IMU
datasets, focusing on the assessment of body poses. Bold numbers indicate the best performing entries.

Euclidean distance error of the body mesh vertices, with the
spine aligned, also in centimeters; 5) Jitter error, the average
jerk of all body joints in predicted motion, which reflects
motion smoothness.

Training Details
The entire training and evaluation regimen was conducted
on a system equipped with 1 Intel(R) Xeon(R) Silver 4110
CPU and 1 NVIDIA GeForce RTX 2080 Ti GPU. Our model
was developed using PyTorch 1.13.0, further accelerated
by CUDA 11.6. Our model configuration sets the input se-
quence length T at 80 frames, with a window and shifted
size of 20 and 10 frames, respectively, and a threshold of
M being 15. The training process, utilizing a batch size of
40, incorporates the Adam optimizer (Kingma and Ba 2017)
initialized with a learning rate of 2e−5. To balance the mag-
nitude of the loss, we set λ and α to 1, β to 10, δ to 0.1, and
γ to 0.01. We focus on regressing information for the 15 ma-
jor joints as defined in the SMPL model, instead of all joints.
Additionally, we apply a moving average with a window size
of 15 to the model’s output, enhancing the smoothness of the
predicted poses.

Comparisons
Quantitative and qualitative comparisons with SIP
(Von Marcard et al. 2017), DIP (Huang et al. 2018),
Transpose (Yi, Zhou, and Xu 2021), PIP (Yi et al. 2022)
and TIP (Jiang et al. 2022b) on the Totalcapture and
DIP-IMU datasets. In this comparison, we utilized the best-
performing models published by the authors. For TIP, the
authors employed a human body format different from ours.
Therefore, we converted TIP’s output into our format before
conducting the comparison. The results for the Totalcapture
and DIP datasets setting in offline mode are presented in
Table 1. Unlike previous methods, our approach does not
consider all IMU readings when estimating the current
pose. However, our method achieves satisfactory results
after integrating semantic information. The performance of
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Figure 5: Mesh error distribution and qualitative compar-
isons between our method (with/without text) and Trans-
pose. The text description of the motion is provided below,
with the sequence label illustrated in green and the frame la-
bel presented in blue.

our method on the DIP dataset is not as impressive as on
the Totalcapture dataset, which can be attributed to the DIP
dataset’s fewer and less detailed semantic annotations. As
shown in Fig 5, our method excels in processing ambiguous
actions like standing and sitting, and is adept at capturing
finer details, such as the accurate alignment of hands and
feet with the ground truth. This demonstrates a more natural,
realistic, and precise performance.

It is worth noting that our full model cannot reconstruct
human motion in real-time due to the requirement for se-
mantic annotation. Therefore, we employ only the Sensor



Encoder and the HTT module for the evaluation in real-
time mode. Our method accesses 70 past frames, 5 current
frames, and 5 future frames through a sliding window ap-
proach, with a tolerable latency of 83 ms. As shown in Table
2, despite the absence of semantic information, our method
still achieved superiority on multiple metrics, thereby vali-
dating the effectiveness of our network design.

The performance of our approach on the jitter metric is
not as robust as other metrics, primarily owing to a con-
strained receptive field from the sliding window mechanism
and the patch merging operation, which combines adjacent
tokens into a single token. However, we posit that jitter, un-
like the other four pose-accuracy metrics, isn’t as critical.
This perspective is based on the observation that visual dis-
crepancies due to jitter are less noticeable when comparing
our method with other approaches, while variations in pose
precision are notably apparent.

Ablation
We perform three ablations to validate our key design
choices: (1) without text semantic information; (2) without
the Uncertainty-guided Spatial Attention (UGSA) module;
(3) without the Hierarchical Temporal Transformer (HTT)
module. Table 3 summarizes the results on the Totalcap-
ture dataset (offline). Ablation experiments underscore the
efficacy of our methodological design, with the integration
of semantic information being the most salient contribu-
tion, followed by the implementation of UGSA and the HTT
module.

Method SIP Err(deg) Ang Err(deg) Pos Err(cm) Mesh Err(cm) Jitter
(102m/s3)

w/o Text 9.21(+/-4.75) 10.30(+/-4.43) 4.19(+/-2.23) 4.86(+/-2.54) 1.87(+/-1.60)

w/o UGSA 8.67(+/-4.73) 9.94(+/-4.37) 4.04(+/-2.22) 4.67(+/-2.50) 1.70(+/-1.55)

w/o HTT 8.35(+/-4.57) 9.70(+/-4.29) 3.89(+/-2.10) 4.52(+/-2.35) 0.44(+/-1.21)

Ours 7.92(+/-4.38) 9.35(+/-4.10) 3.70(+/-2.03) 4.32(+/-2.29) 1.74(+/-1.55)

Table 3: Evaluation of Ablation Models on the Totalcapture
Dataset. Bold numbers indicate the best performing entries.

Without semantic information, the model’s predictions
fluctuate in ambiguous situations, a phenomenon illustrated
in Fig. 6 by the erratic alternation between sitting and stand-
ing positions. By incorporating a simple semantic annota-
tion like “sitting”, our model is able to maintain the desired
sitting posture effectively.

Our findings indicate that the absence of Uncertainty-
guided Spatial Attention affects the accuracy of the results.
Fig. 7 illustrates how uncertainty fluctuates over time. Un-
certainty increases across all sensors during complex move-
ments like squatting and crawling, particularly in the hand
regions. Conversely, a transition to a standing posture leads
to a marked reduction in uncertainty, with the leg sensors
showing the lowest levels.

In examining the Hierarchical Temporal Transformer
(HTT), we discern that employing window attention and
patch merging within this module, instead of global atten-
tion, not only curtails computational needs but also elevates
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Figure 6: We demonstrated a comparison between our
method (with/without text) and Transpose in a sitting situ-
ation, focusing on the analysis of upper leg rotation error.
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Figure 7: Temporal Evolution of Uncertainty Across Six
Sensors: Each row represents a different sensor, with color
variations indicating changes in uncertainty.

performance in almost all metrics, barring jitter. We consider
such a trade-off to be acceptable.

These ablation findings affirm our approach’s superior ca-
pacity for modeling sensor information and its ability to
leverage semantic cues for generating more precise and nat-
ural movements.

Conclusion

In this paper, we are dedicated to addressing the ambigu-
ity issues associated with using sparse inertial sensors for
motion reconstruction. Our approach involves enhancing the
sensor data modeling capabilities and incorporating textual
supervision. In the realm of sensor data modeling, we in-
troduced an Uncertainty-guided Spatial Attention Module
to model spatial relationships amongst IMUs while con-
sidering their respective uncertainty. For the modal fusion,
we leverage the Hierarchical Temporal Transformer (HTT)
module to achieve temporal alignment between sensor fea-
tures and textual semantics. Furthermore, we employ con-
trastive learning to align features from both modalities in
a high-dimensional space before fusion. Experimental re-
sults have validated the effectiveness of our method. Look-
ing ahead, we plan to explore the integration of real-time ex-
ecution capabilities into our framework. This could include
the combination of natural language reasoning with motion
data, potentially utilizing “prompt learning” to train a de-
coder that performs real-time text annotation.



Acknowledgements
This article is sponsored by National Key R&D Pro-
gram of China 2022ZD0118001, National Natural Science
Foundation of China under Grant 61972028, 62332017,
62303043 and U22A2022, and Guangdong Basic and
Applied Basic Research Foundation 2023A1515030177,
2021A1515012285.

References
Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y. 2017. Re-
altime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 7291–7299.

Chen, L.; Ai, H.; Chen, R.; Zhuang, Z.; and Liu, S. 2020.
Cross-view tracking for multi-human 3d pose estimation at
over 100 fps. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
3279–3288.

Dittadi, A.; Dziadzio, S.; Cosker, D.; Lundell, B.; Cashman,
T. J.; and Shotton, J. 2021. Full-body motion from a single
head-mounted device: Generating smpl poses from partial
observations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 11687–11697.

Guo, C.; Zou, S.; Zuo, X.; Wang, S.; Ji, W.; Li, X.; and
Cheng, L. 2022. Generating diverse and natural 3d human
motions from text. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
5152–5161.

Huang, Y.; Kaufmann, M.; Aksan, E.; Black, M. J.; Hilliges,
O.; and Pons-Moll, G. 2018. Deep inertial poser: Learning to
reconstruct human pose from sparse inertial measurements
in real time. ACM Transactions on Graphics (TOG), 37(6):
1–15.

Jiang, J.; Streli, P.; Qiu, H.; Fender, A.; Laich, L.; Snape, P.;
and Holz, C. 2022a. Avatarposer: Articulated full-body pose
tracking from sparse motion sensing. In Proceedings of the
European conference on computer vision (ECCV), 443–460.
Springer.

Jiang, Y.; Ye, Y.; Gopinath, D.; Won, J.; Winkler, A. W.; and
Liu, C. K. 2022b. Transformer Inertial Poser: Real-Time
Human Motion Reconstruction from Sparse IMUs with Si-
multaneous Terrain Generation. In SIGGRAPH Asia 2022
Conference Papers, SA ’22 Conference Papers.

Kendall, A.; and Gal, Y. 2017. What uncertainties do
we need in bayesian deep learning for computer vi-
sion? Advances in Neural Information Processing Systems
(NeurIPS), 30.

Kim, M.; and Lee, S. 2022. Fusion Poser: 3D Human Pose
Estimation Using Sparse IMUs and Head Trackers in Real
Time. Sensors, 22(13): 4846.

Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.

Kingma, D. P.; and Welling, M. 2022. Auto-Encoding Vari-
ational Bayes. arXiv:1312.6114.

Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 10012–10022.

Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; and
Black, M. J. 2015. SMPL: A skinned multi-person linear
model. ACM Transactions on Graphics (TOG), 34(6): 1–16.

Mahmood, N.; Ghorbani, N.; Troje, N. F.; Pons-Moll, G.;
and Black, M. J. 2019. AMASS: Archive of motion capture
as surface shapes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 5442–5451.

Malleson, C.; Gilbert, A.; Trumble, M.; Collomosse, J.;
Hilton, A.; and Volino, M. 2017. Real-time full-body mo-
tion capture from video and imus. In 2017 International
Conference on 3D Vision (3DV), 449–457. IEEE.

Moon, S.; Madotto, A.; Lin, Z.; Dirafzoon, A.; Saraf, A.;
Bearman, A.; and Damavandi, B. 2022. IMU2CLIP: Multi-
modal Contrastive Learning for IMU Motion Sensors from
Egocentric Videos and Text. arXiv:2210.14395.

Punnakkal, A. R.; Chandrasekaran, A.; Athanasiou, N.;
Quiros-Ramirez, A.; and Black, M. J. 2021. BABEL: Bod-
ies, Action and Behavior with English Labels. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 722–731.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, 8748–8763. PMLR.

Schepers, M.; Giuberti, M.; Bellusci, G.; et al. 2018. Xsens
MVN: Consistent tracking of human motion using inertial
sensing. Xsens Technol, 1(8): 1–8.

Sengupta, A.; Budvytis, I.; and Cipolla, R. 2023. HuMan-
iFlow: Ancestor-Conditioned Normalising Flows on SO (3)
Manifolds for Human Pose and Shape Distribution Estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 4779–4789.

Slyper, R.; and Hodgins, J. K. 2008. Action capture with
accelerometers. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
193–199.
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