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ABSTRACT

Real-time video super-resolution requires low latency with high-
quality reconstruction. Existingmethodsmostly use pruning schemes
or neglect complicated modules to reduce the calculation com-
plexity. However, the video contains large amounts of temporal
redundancies due to the inter-frame correlation, which is rarely in-
vestigated in existing methods. The static and dynamic information
lies in feature maps and represents the redundant complements
and temporal offsets respectively. It is crucial to split channels with
dynamic and static information for efficient processing. Thus, this
paper proposes a kernel-split strategy to activate available kernels
for real-time inference. This strategy focuses on the dimensions of
convolutional kernels, including the channel and depth dimensions.
Available kernel dimensions are activated according to the split of
high-value and low-value channels. Specifically, a multi-channel se-
lection unit is designed to discriminate the importance of channels
and filter the high-value channels hierarchically. At each hierarchy,
low-dimensional convolutional kernels are activated to reuse the
low-value channel and re-parameterized convolutional kernels are
employed on the high-value channel to merge the depth dimension.
In addition, we design amultiple flow deformable alignment module
for a sufficient temporal representation with affordable calculation
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cost. Experimental results demonstrate that our method outper-
forms other state-of-the-art (SOTA) ones in terms of reconstruction
quality and runtime.
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1 IN TRODUCTION

Since the low-resolution and degradation factors affect video qual-
ity, super-resolution plays a vital role in improving video fidelity.
Plain video super-resolution (VSR) methods [24, 29] employ deep
networks and complicated modules for video feature extraction and
reconstruction. Nevertheless, these methods are too heavy and com-
plex to be deployed on devices, where a real-time inference speed
should be satisfied. Real-time video super-resolution (RTVSR) aims
at restoring the high-resolution (HR) video from its low-resolution
(LR) version with a real-time processing pipeline. Compared to
plain VSR methods, RTVSR needs to remove the model redundancy
and explore efficient modules for real-time inference. Therefore,
lightweight feature extractors and efficient motion exploitation
modules are key factors to RTVSR.

Existing VSR methods [4, 8] have demonstrated outstanding per-
formance on offline videos. From the perspective of the framework
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architecture, these methods can be categorized as window-based
networks with the multi-input and single-output paradigm and
recurrent-based networks with the multi-input and multi-output
paradigm. The window-based methods [12, 25] restore the middle
frame using several adjacent frames in a short temporal window.
Due to the limitation of the window size, window-based meth-
ods suffer from a narrow temporal scope and can’t leverage the
information outside the window. To capture the long-term depen-
dencies, recurrent-based methods employ the unidirectional frame-
works [7, 21] to utilize the propagated information from distant
frames. A bidirectional recurrent network [3] is further designed
with several effective components for information refill and ex-
ploits the bidirectional temporal information. Moreover, several
methods utilize the non-local mechanism [31] and Transformer [15]
to exploit the global temporal information of the video. However,
both window-based and recurrent-based methods tend to focus on
the repetitive semantic information during the iterative process
and feature extraction. In addition, extracting the global temporal
information requires a significant amount of memory and com-
putational cost. Consequently, these methods are too heavy and
time-consuming to perform real-time inference.

To meet the real-time processing requirement, existing methods
explore efficient propagation strategies for fast processing. Dario
et al. [6] proposes an efficient latent space propagation for iterative
transformation. Isobe et al. [9] presents a recurrent identity map-
ping operation to preserve long-range information. Some methods
design lightweight alignment strategies to utilize temporal informa-
tion. Bare et al. [1] proposes a lightweight convolutional kernel for
alignment and introduced a gated unit with learnable parameters
for inter-frame information. However, these methods lack tempo-
ral information and achieve limited reconstruction quality gains.
Furthermore, some methods employ the pruning scheme [13] on
the recurrent-based framework to decrease the time complexity.
Zhang et al. [34] proposes a sparsity-based learning scheme using a
weight normalization layer on the scale parameter to process each
frame. Xia et al. [26] designs a pruning scheme to learn the struc-
tural sparsity of the residual connection. These methods accelerate
the runtime, whereas the removed internal parameters lead to a
performance drop. Furthermore, few studies focus on the redun-
dancy of static information from feature maps, which is essential
for the degree of parallelism at the inference stage.

Figure 1 illustrates the visualization of low-value and high-value
channels. It’s seen that low-value channels include minimal con-
texts and tend to supplement static information, while high-value
ones contain clear structures that contribute to dynamic informa-
tion. To eliminate redundancy in static information and focus on
dynamic information for sub-pixel referenced compensation, in
this paper, we propose a kernel-split strategy to activate avail-
able kernels for RTVSR. Unlike pruning schemes that discard in-
ternal parameters, we identify the high-value ones from feature
channels to decrease the kernel dimension for a sparse processing
pipeline. Specifically, a multi-channel selection unit is designed
to split feature channels into low-value and high-value parts for
static complementary and dynamic structural information respec-
tively. In allusion to these allocated channels, a hierarchical archi-
tecture is adopted to filter the features step by step, reducing the
kernel dimension and complexity of deep feature extraction. The

Static
information

Dynamic 
information

High-value channels

Low-value channels

Figure 1: Visualization of features: low-value channels for

the static information (gre en area) and high-value channels

for the dynamic information (orange area).

re-parameterization mechanism is employed to merge the depth
dimension of the convolutional kernel at each hierarchy, which
increases the representation capacity and inference speed. Addition-
ally, multiple flows are utilized to guide the deformable alignment.
The training burden of deformable convolution is reduced via the
residual offset strategy, and the representation of motion modelling
is enhanced by continuous flow priors with affordable computa-
tional cost. Experimental results on different benchmarks verify
that the proposed KSNet performs a real-time evaluation at 32.3 fps
and outperforms other methods in terms of real-time reconstruc-
tion performance. Our contributions are summarized as follows:

• We propose a Kernel Split Network (KSNet) for RTVSR, in-
cluding unidirectional and bidirectional recurrent paradigms,
which can reconstruct the 720 × 1080 video with 31 ms and
achieve superior results over other SOTA methods.

• Wedesign a kernel-split strategy to discriminate the channels
of high-value and low-value. The re-parameterized convolu-
tions are further applied on the high-value channels. This
strategy enables the exploration of high-value dynamic in-
formation and the representation of convolutional layers,
along with dimension complexity reduction.

• We adopt multiple flows on the deformable alignment mod-
ule to light the training burden of the deformable convolution
and enhance the motion representation with affordable cal-
culation costs. Multiple flow maps also expand the receptive
field on the temporal dimension.

2 RELATED WORK

Existing video super-resolution methods can be categorized as plain
video super-resolution methods which focus on the reconstruction
quality, and real-time video super-resolution methods which focus
on the runtime. In this section, we discuss these two categories and
analyze the different strategies in detail.

2.1 P lain Vide o Sup er-resolution

Plain video super-resolution methods mostly employ complicated
motion estimation and compensation strategies to explicitly explore
the temporal correspondence to improve the reconstruction quality.
In particular, Yan et al. [28] coupled the sliding window and uni-
directional network to incorporate previous restored information
and local information. Li et al. [12] introduced an iterative network
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with the multi-scale flow estimation and complex reconstruction
module for video super-resolution. Wang et al. [22] reconstructed
the low-resolution optical flow result to improve the frame align-
ment performance for video super-resolution, and further proposed
an optical flow reconstruction network (OFRNet) [23] to obtain the
high-quality flowmap for accurate alignment results. Chan et al. [3]
further proposed a bidirectional framework to utilize the comple-
mentary motion information for video super-resolution. Since the
accuracy of frame alignment depended on flow estimation, many
methods explored implicit estimation strategies to align the consec-
utive frames. Wang et al. [24] presented a multi-scale deformable
convolution using the pyramid structure to enhance the frame
alignment. Ying et al. [32] further developed the 3D deformable
convolution for the spatio-temporal information. Isobe et al. [8] em-
ployed 3D convolution blocks on decomposed frame groups for the
inter-group alignment. In addition, some works utilized global tem-
poral information via a non-local mechanism. Yi et al. [31] proposed
to capture the spatio-temporal information among multi-frames.
Liu et al. [15] proposed to learn the trajectory of the video contents
using the self-attention mechanism. However, these methods relied
on complicated modules and required complex calculations, which
hindered the real-time evaluation.

2.2 Real-time Vide o Sup er-resolution

Existing real-time video super-resolution methods avoid using com-
plicated calculation modules and deep networks to accelerate the
inference speed. Specifically, Caballero et al. [20] proposed a novel
sub-pixel convolutional layer to replace the interpolation algorithm
for upsampling, and further introduced the lightweight motion
estimation and sub-networks [2] to achieve the real-time inference.
Dario et al. [6] designed a recurrent propagation mechanism in the
latent space to incorporate the spatio-temporal information. Isobe et
al. [9] proposed a recurrent identity mapping operation to capture
the long-range information and accelerate the convergence. Yi et
al. [30] just lowered the feature extractors in the omniscient net-
work to achieve a real-time evaluation on the premise of promising
reconstruction quality. Dario et al. [5] proposed an efficient align-
ment module using non-local attention for the temporal informa-
tion. Zeng et al. [33] introduced a depthwise separable up-sampling
module for real-time processing. Nevertheless, these methods dis-
carded the temporal information to some extent and only achieved
limited performance gains. In contrast, some methods utilized the
pruning schemes on the deep networks to efficiently preserve tem-
poral information. Zhang et al. [34] used a normalization layer on
the scale parameter for sparse processing. Xia et al. [26] designed
a pruning scheme to learn the sparse representation of VSR net-
works. We focus on the convolutional kernel dimensions to reduce
the model redundancy, which is different from the sparsity-based
pruning schemes and retains the temporal information.

3 PROPOSED METHOD

3.1 O ver view

As shown in Figure 2, our network is constituted with a recur-
rent structure. Given a sequence of LR frames { 𝑥 1 , 𝑥 2 , . . ., 𝑥 𝑛 , . . ., 𝑥 𝑁 }
where 𝑥 𝑛 ∈R𝐶 × 𝐻 × 𝑊 , the HR frames { 𝑦1 ,𝑦2 , . . .,𝑦 𝑛 , . . .,𝑦 𝑁 } are re-
constructed in a frame-to-frame pipeline. First, for an input frame

𝑥 𝑛 , ℎ 𝑛 is the aligned feature warped from the previous frame 𝑥 𝑛−1 ,
and 𝑔𝑛 is exploited for propagation. 𝑔𝑛−1 is concatenated with
ℎ 𝑛 and 𝑥 𝑛 to obtain the coupled feature 𝑓 for kernel split in the
multi-channel selection unit, which can merge the kernel dimen-
sion and greatly reduce the model redundancy. The low-value
channels are cached and reused for supplementary and the high-
value channels are deeply explored for dynamic information using
the re-parameterization strategy. Next, the propagation features
{ 𝑔1 , 𝑔 2 , . . ., 𝑔 𝑛 , . . ., 𝑔 𝑁 } are refined by the other recurrent branch with
a similar process. Finally, a reconstruction module including resid-
ual blocks and a pixel shuffle layer [20] reconstructs HR frames.

3.2 Kernel-split Strategy

To address the issue of limited utilization of dynamic information
and convolutional kernels, a Multi-channel Selection Unit (MSU)
is devised to split the high-value and low-value channels to merge
the kernel dimensions hierarchically.

Multi-channel Sele ction. Since the propagation feature 𝑔𝑛−1
is concatenated with ℎ 𝑛 and 𝑥 𝑛 to obtain the coupled feature 𝑓 ,
some offsets still exist. These offsets represent the temporal content
for inter-frame compensation and the dynamic information for
temporal consistency. Thus, it is necessary to split the high-value
and low-value channels from 𝑓 to learn the dynamic information
and reduce the model redundancy. In this approach, we use the
weighted gradient map as a measure of temporal information and
split channels according to the Euclidean norm. Specifically, we
first calculate the gradient map of 𝑓 to discriminate dynamic and
static regions, which is formulated as:

𝐺 = ∥ ∇ 𝑓 ∥ 2 , (1)

where 𝐺 and ∇ 𝑓 denote the gradient value and gradient vector
respectively. Then, the gradient map is masked with 𝑓 , and weights
are assigned to process different regions accordingly, which is
shown in Figure 3. Next, we extract the original offset 𝑓 𝑜 from
every two input frames, which represents the original temporal
contents. The Euclidean distance 𝐸𝑢 𝑐 ( 𝑓 𝑜, 𝑓 ) is employed to measure
the channel correlations, formulated as:

𝐸𝑢 𝑐 ( 𝑓 𝑜, 𝑓 ) = ∥ ( 𝜆 1 ∗ 𝐺 + ( 1 − 𝜆 1 ) ∗ [ 𝐺 , 𝑓 ] ) − 𝑓 𝑜∥ 2 , (2)

where [ , ] denotes the mask operation and 𝜆 1 is a learnable weight
factor to control the trade-off between dynamic and static infor-
mation, initialized as 0.5. Then, we select the top-K channels of
𝑓 that are most correlated to the original offset 𝑓 𝑜 to exploit the
dynamic information. The top 75% channels are marked as high-
value channels and the remaining ones are marked as low-value
channels, which will be verified in the ablation study section. The
top-K selection strategy is formulated as follows.

𝑡𝑜 𝑝 -𝑘 ( 𝑓 ) =

(
𝑓 𝑐𝑜𝑛 if the score of 𝐸𝑢 𝑐 ( 𝑓 𝑜, 𝑓 ) is the top 75%

𝑓 𝑑𝑖𝑠 others
(3)

Hierarchical Kernel-split. After the multi-channel selection,
the coupled feature 𝑓 is split into sub-features { 𝑓 𝑑𝑖𝑠, 𝑓 𝑐𝑜𝑛} , where
𝑓 𝑑𝑖𝑠represents the low-value channels and 𝑓 𝑐𝑜𝑛represents the
high-value channels. For hierarchical processing with a three-level
stage, the high-value channels are split following Eq. (3) at each
hierarchy, as shown in Figure 4(a). Take the first hierarchy for
example, the channel number of 𝑓 𝑑𝑖𝑠1 is split as a quarter of 𝑓 , and
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Figure 2: O ver view of the prop ose d KSNet, which is a re current-base d framework with a frame-to-frame pip eline. The input

frames are propagate d in the first re current branch (gre en area) and then refine d in the other re current branch ( blue area).

the retained channels are allocated to 𝑓 𝑐𝑜𝑛
1 . A Shallow Convolution

Buffer (SCB) is utilized on 𝑓 𝑑𝑖𝑠1 to cache and reuse the low-value
channels as well as to decrease the kernel dimensions. The high-
value channels of 𝑓 𝑐𝑜𝑛

1 are deeply exploited to obtain 𝑓 𝑐𝑜𝑛
2 for

further processing. The kernel dimension is reduced along with
the split channels. Finally, the cached low-value features and high-
value features are exploited by the Enhanced Spatial Attention
(ESA) [16] to obtain the propagation feature 𝑔. The procedure of
MSU is formulated as:

𝑓 𝑑𝑐 = 𝑐 𝑎𝑡 ( 𝑓 𝑑𝑖𝑠1 , 𝑓 𝑑𝑖𝑠
2 , 𝑓 𝑑𝑖𝑠

3 , 𝑓 𝑐𝑜𝑛
3 ) ,

𝑔 = 𝐸 𝑆 𝐴 ( 𝑐 𝑎𝑡 ( 𝑓 , 𝑓 𝑑𝑐) ) , (4)

where 𝑓 𝑑𝑖𝑠1 , 𝑓 𝑑𝑖𝑠2 and 𝑓 𝑑𝑖𝑠3 denote the low-value channels at different
hierarchy respectively, and 𝑓 𝑐𝑜𝑛

3 denotes the high-value feature
at the last hierarchy. In this procedure, 𝑓 𝑐𝑜𝑛

3 is filtered step by
step to select the dynamic information for propagation, where
𝑓 𝑑𝑖𝑠1 , 𝑓 𝑑𝑖𝑠2 and 𝑓 𝑑𝑖𝑠3 are cached in the buffer to provide the static
complementary information. This decreases the redundant kernels
for feature exploitation and propagation.

(a) Gradient map (b) Weighted gradient map

Figure 3: (a) is the gradient map 𝐺 . ( b) is the weighte d map

combine d with 𝐺 and 𝑓 . The highlighte d area in the re d re c-

tangle represents the temp oral contents with high weights.

The other area in the yellow re ctangle deser ves low weights.

Moreover, ESA is utilized to enhance the representation of the
deep features on the spatial dimension. While MSU splits the high-
value and the low-value channels to explore dynamic information

on the channel dimension, the correspondence on the spatial dimen-
sion also deserves attention. Since the shallow and the deep features
require to be focused on spatial contents of key importance, they
can be exploited by the spatial attention mechanism. Specifically,
ESA works at the end of MSU to aggregate the shallow and deep
features which are forced to focus on the regions of interest.

Channel-split

ଵ
௖௢௡

Spatial 
Convolution
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Convolution

Training

3x3 Convolution

Testing

(b)

ଵ
௖௢௡

ଶ
௖௢௡

ଶ
௖௢௡RCB

RCB

RCB

Concatenate

ESA
𝑔

ௗ௖

SCB

SCB

SCB

ଵ
ௗ௜௦

ଶ
ௗ௜௦

ଷ
ௗ௜௦

ଷ
௖௢௡

ଵ
௖௢௡

ଶ
௖௢௡

(a)

Figure 4: Multi-channel sele ction unit. (a) is the hierarchical

split structure. ( b) is the re-parameterize d convolution blo ck

which is employe d in MSU to re duce the computational cost.

Kernel Re-parameterization. Solely using a 3 × 3 convolutional
layer for deep feature exploration leads to a weak representation.
Hence, we employ the Re-parameterized Convolution Block (RCB)
on the high-value channels for deep feature extraction, as shown in
Figure 4(b). Parallel convolutions are adopted to replace the single
vanilla convolution. These convolutions include a plain convolu-
tional kernel to extract the spatial information, and first-order and
second-order edge convolutional kernels to extract the detailed in-
formation. The first-order and second-order convolutional kernels
are high-order versions since they calculate spatial derivatives for
edge details. Specifically, we incorporate extraction of derivatives
into the spatial convolutional kernel to get dynamic structures,
where the Sobel filter and the Laplacian filter are employed to cal-
culate the first-order and the second-order derivatives, respectively.
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These convolutional kernels are merged as a single convolutional
kernel at the inference stage, which can greatly reduce the calcula-
tion complexity.

We take the sequential convolutional kernels for example, which
are employed to enlarge the representation capacity at the training
stage and re-parameterized as the single convolutional layer at the
inference stage for efficiency. The consecutive convolutions are
formulated as:

𝜎 2 ( 𝜎 1 ( 𝑘 ) ) = 𝑊 2 ∗ ( 𝑊 1 ∗ 𝑘 + 𝐵 1 ) + 𝐵 2 , (5)

where 𝑊 1 and 𝑊 2 denote the weights of the convolutional ker-
nel. 𝐵 1 and 𝐵 2 denote the bias of the convolution. The 𝜎 1 convo-
lution ( 𝑊 1 , 𝐵 1 ) and 𝜎 2 convolution ( 𝑊 2 , 𝐵 2 ) are merged into the
re-parameterized version, formulated as:

𝑊 ps = 𝑝𝑒𝑟 𝑚 ( 𝑊 1 ) ∗ 𝑊 2 ,

𝐵 ps = 𝑊 2 ∗ 𝑟𝑒𝑝 ( 𝐵 1 ) + 𝐵 2 ,
(6)

where 𝑝𝑒𝑟 𝑚 and 𝑟𝑒𝑝 denote the dimension exchange and broad-
casting operation to maintain the tenor size. The transformation of
the re-parameterized kernel is formulated as:

𝑊
:, :,𝑖+ ⌊ 𝐻 −ℎ

2 ⌋ ,𝑗+ ⌊ 𝑊 −𝑤
2 ⌋

pr = 𝑊
:, :,𝑖,𝑗
ps ,

𝐵 pr = 𝐵 ps ,
(7)

where 𝑖 and 𝑗 denote the element position in the convolutional
kernels. 𝑊 pr and 𝐵 pr denote the target convolution with the kernel
𝐻 × 𝑊 , transformed from the kernel ℎ × 𝑤 . The final weights 𝑊 𝑟𝑒
and bias 𝐵 𝑟𝑒are re-parameterized as:

𝑊 𝑟𝑒= 𝑊 𝑝 + 𝑊 𝑜𝑛𝑒+ 𝑊 𝑠𝑒𝑐,
𝐵 𝑟𝑒= 𝐵 𝑝 + 𝐵 𝑜𝑛𝑒+ 𝐵 𝑠𝑒𝑐, (8)

where 𝑊 𝑟𝑒and 𝐵 𝑟𝑒denote theweights and bias of the re-parameterized
convolutional kernels. 𝑊 𝑜𝑛𝑒, 𝑊 𝑠𝑒𝑐and 𝐵 𝑜𝑛𝑒, 𝐵 𝑠𝑒𝑐denote theweights
and bias from the first- and second-order convolutional kernels re-
spectively, which are transformed following Eq. (6) and Eq.( 7).

3.3 Deformable Alignment with Multiple F low

To meet the real-time requirement, some efficient networks neglect
the inter-frame information to decrease the complexity, leading
to blurs and limited performance gains. It is essential to design
an efficient alignment method with affordable computational cost.
Thus, a Multiple Flow Deformable Alignment (MFDA) module is
proposed to align the motion area, as shown in Figure 5.

For features 𝑓 𝑛 , 𝑓 𝑛−1 and 𝑓 𝑛−2 that are extracted from the corre-
sponding frames 𝑥 𝑛 , 𝑥 𝑛−1 and 𝑥 𝑛−2 , flow maps between the succes-
sive frames 𝑠 𝑛→ 𝑛−1 and 𝑠 𝑛−1 → 𝑛−2 are estimated as:

𝑠 𝑛→ 𝑛−1 = ME ( 𝑓 𝑛 , 𝑓 𝑛−1 ) ,
𝑠 𝑛−1 → 𝑛−2 = ME ( 𝑓 𝑛−1 , 𝑓 𝑛−2 ) , (9)

whereME denotes the optical flownetwork. The optical flow 𝑠 𝑛→ 𝑛−1
indicates the flow offsets from 𝑓 𝑛−1 to 𝑓 𝑛 . In other words, 𝑠 𝑛→ 𝑛−1
represents the pixel shift of 𝑓 𝑛 compared with 𝑓 𝑛−1 . The multi-
reference flow 𝑠 𝑛 is obtained by the sum of 𝑠 𝑛→ 𝑛−1 and the warped
𝑠 𝑛−1 → 𝑛−2 .

𝑠 𝑛 = 𝑠 𝑛→ 𝑛−1 + MC ( 𝑠 𝑛−1 → 𝑛−2 , 𝑠 𝑛→ 𝑛−1 ) , (10)

𝑓௡ିଵ 𝑓௡

Flow
estimation

𝑤

𝑐

Conv layers

Residual offsetsDCN block𝑓መ௡

Flow
estimation

𝑓௡ିଶ
𝑤𝑤

Flow map Flow map

𝑆௡̅

𝑂௡

Figure 5: Archite cture of the prop ose d deformable alignment

with multiple flows. F low maps are calculate d from different

inter-frames to extend the temp oral re ceptive field.

where MC denotes the motion compensation. Meanwhile, 𝑓 𝑛−1 and
𝑓 𝑛−2 are warped with 𝑠 𝑛→ 𝑛−1 and 𝑠 𝑛−1 → 𝑛−2 respectively to obtain
the multi-reference feature 𝑓 𝑛 .

𝑓 𝑛 = MC ( 𝑓 𝑛−2 , 𝑠 𝑛−1 → 𝑛−2 ) + MC ( 𝑓 𝑛−1 , 𝑠 𝑛→ 𝑛−1 ) , (11)

Finally, the residual offset 𝑂 𝑛 is computed from 𝑓 𝑛 and 𝑓 𝑛 . The
aligned feature ˆ𝑓 𝑛 from 𝑓 𝑛−1 to 𝑓 𝑛 is computed from the multi-
reference flow 𝑠 𝑛 and offset 𝑂 𝑛 using the deformable convolution.

𝑂 𝑛 = 𝐶 ( 𝑐 𝑎𝑡 ( 𝑓 𝑛 , 𝑓 𝑛 ) ) ,
ˆ𝑓 𝑛 = 𝐷 ( 𝑂 𝑛 + 𝑠 𝑛 ) , (12)

where 𝐶 denotes the convolutional layer and 𝐷 denotes the DCN
layer. We utilize the lightweight optical flow network SpyNet [19]
for motion estimation and shallow convolutional layers for DCN
offsets since it can conduct efficient flow estimation with affordable
time consumption.

4 EXPERIMEN T

4.1 Datasets and Implementation Details

Comprehensive experiments are conducted on different datasets.
REDS [18] and Vimeo90K [27] are used for training. For REDS [18],
we adopt REDS4 [18] as test dataset following the previouswork [24].
For Vimeo90K [27], we take Vid4 [14] and Vimeo90K-T [27] as test
datasets. For a fair comparison, all of the models are tested using
one NVIDIA RTX 3080.

At the training stage, the cosine annealing scheme [17] is adopted
to adjust the learning rate. The initial learning rate of the main net-
work is set to 1 × 10−4 on REDS [18] and 2 × 10−4 on Vimeo90K [27],
while the learning rate of the fine-tuned flow network is doubled.
The total iteration number is 600K. The weights of the flow esti-
mator are fixed during the first 5,000 iterations. We use ADAM
optimizer [10] with 𝛽 1 = 0. 9 , 𝛽 2 = 0. 999 and𝜖= 10−8 . The patch
size in training is set to 64 × 64 and the channel number of features
maps is set to 64. We adopt 5 residual blocks for spatial processing
and 1 residual block for reconstruction. The Charbonnier loss [11]
is used to constrain a stable network, formulated as:

𝐿 =
1
𝑁

𝑁∑︁
𝑛=1

√︃
( 𝑦𝑛 − 𝑌 𝑛 ) 2 + 𝜀 2 , (13)

where 𝑌 𝑛 is the 𝑛 -th ground truth frame and 𝜀 is set to 10−3 .
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Table 1: Quantitative comparison with different metho ds. The b est and se cond-b est results are marke d with b old and underline

resp e ctively. FLOPs (G), fps (1/s), and runtime (ms) are compute d on an LR size of 180 ×320 using one N VIDIA RTX 3080.

Methods Params(M) FLOPs(G) fps(1/s) Run(ms) Test datasets
Vid4 REDS4 Vimeo90K-T

Bicubic - - - - 23.78/0.6347 26.14/0.7292 31.30/0.8687
VESPCN [2] - - 28.6 35 25.35/0.7557 - -
RLSP [6] 4.2 503.7 21.7 46 27.05/0.8139 - 36.49/0.9403
RRN [9] 3.4 387.5 22.2 45 27.09/0.8185 - -

DAP-128 [5] - 330.0 26.3 38 - 30.59/0.8703 37.29/0.9476
RSDN [7] 6.2 713.2 10.6 94 27.22/0.8249 - 37.23/0.9471

EDVR-M [24] 3.3 925.7 8.6 116 27.10/0.8186 30.53/0.8699 37.33/0.9484
KSNet-uni (Ours) 3.0 296.9 32.3 31 27.14/0.8208 30.69/0.8724 37.34/0.9490

ASSL-bi [34] 2.7 210.2 32.3 31 27.03/0.8163 30.72/0.8783 36.71/0.9410
RSCL-bi [26] 2.7 210.2 32.3 31 27.16/0.8213 30.99/0.8831 36.83/0.9421
BasicVSR [3] 6.3 330.0 15.9 63 27.24/0.8251 31.42/0.8909 37.53/0.9450

KSNet-bi (Ours) 3.0 296.9 32.3 31 27.22/0.8245 31.14/0.8862 37.54/0.9503

4.2 Comparisons with State-of-the-Art

We train and test KSNet with two setups: KSNet-uni and KSNet-bi
for unidirectional and bidirectional propagation. Parameter num-
bers (Params), FLOPs, frames per second (fps), and runtime (Run)
are used to evaluate the efficiency, while PSNR and SSIM are em-
ployed to measure the reconstruction quality. We compare KSNet-
uni with RLSP [6], RRN [9], RSDN [7], etc., and KSNet-bi with
BasicVSR [3] and its pruned versions [26, 34].

The results are summarized in Table 1. As a unidirectional type,
KSNet-uni performs a real-time evaluation with 31 ms and 32.3 fps,
which is the only method that exceeds 30 fps. Moreover, KSNet-uni
almost surpasses other methods on all metrics. KSNet-uni gets 0.1
dB gains than the real-time method DAP [5]. KSNet-uni further
surpasses RSDN [7] 0.11 dB on Vimeo90K-T [27] and gets a com-
parable result on Vid4 [14], with a reduction in both runtime and
FLOPs over × 3. As a bidirectional type, KSNet-bi achieves the same
inference speed and superior performance compared with pruning-
based methods. Specifically, KSNet-bi outperforms RSCL-bi [26]
up to 0.7 dB on Vimeo90K-T [27] with the same runtime. Besides,
compared to the plain method BasicVSR [3], KSNet-bi gets 0.01
dB gains on Vimeo90K-T [27] and comparable results on Vid4 [14]
with half of the runtime. These results show that KSNet performs a
real-time inference with competitive reconstruction quality.

(a) low-value feature (b) high-value feature

Figure 6: Visualization of t he high-value and low-value fea-

tures. The re d re ctangle in ( b) contains pre cise motions, while

the re d re ctangle in (a) only contains mixe d offsets.

Moreover, we visualize the high-value and low-value features
to evaluate the dynamic information in Figure 6. It’s seen that mo-
tion offsets in the low-value feature are blurred and mixed. On

the contrary, the high-value feature contains clear offsets and con-
crete structures to learn the temporal information. The consecutive
detailed offsets also represent the motion trajectory for tempo-
ral consistency. Therefore, the high-value feature that consists of
precise dynamic information deserves more attention and explo-
ration. As shown in Figure 7, we also provide some visual samples
for qualitative evaluation. Bicubic interpolation, the plain method
EDVR-M [24] and the real-time method DAP [5] are taken into
comparison. KSNet produces high-quality frames with clear struc-
ture and edge details, while other methods generate artifacts at
different levels. These samples also verify the superiority of KSNet.

5 ABLATION ST UDY

5.1 Kernel Split Ratio

TheMSU splits feature channels into high-value and low-value parts
and allocates different convolutional kernels for efficient processing.
It is inappropriate to determine the optimal split ratio empirically.
Therefore, we conduct ablation experiments to confirm the optimal
ratio in KSNet, which is shown in Figure 8.

It is seen that increasing the split ratio on the high-value channel
improves reconstruction performance. Specifically, while the split
ratio is below 50%, KSNet gets limited performance gains with less
than 3.0 M parameters, indicating that the constrained ratio hinders
the performance gains. The 100% ratio also obtains limited perfor-
mance gains and needs extra 0.3 M parameters compared to the
75% ratio. It indicates that the dynamic information of high-value
channels tends to be saturated in the 75% feature channels. Increas-
ing the split ratio beyond this point doesn’t significantly improve
the restoration performance but rather adds redundant parameters.
These results show that the 75% split ratio strikes the trade-off
between restoration performance and model complexity. Moreover,
we take visual samples to verify the reconstruction quality, shown
in Figure 9. It’s seen that the 100% setup obtains the best visual
quality compared to the others. 25% and 50% setups generate blurry
artifacts in brickwork textures. 75% setup also generates visual-
pleasing results and strikes the trade-off between reconstruction
quality and parameter numbers.
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Bicubic EDVR-M DAP KSNet (Ours) Ground-Truth
(24.85dB / 0.7621) (31.68 / 0.9499) (31.86 / 0.9567) (32.04 / 0.9634)

(a) Visual samples on REDS4 ( 000 clip)

Bicubic EDVR-M DAP KSNet (Ours) Ground-Truth
(22.61 / 0.7820) (31.84 / 0.9409) (32.42 / 0.9534) (32.94 / 0.9593)

( b) Visual samples on REDS4 ( 010 clip)

Bicubic EDVR-M DAP KSNet (Ours) Ground-Truth
(22.11 / 0.7691) (25.13 / 0.8074) (26.51 / 0.9065) (26.74 / 0.9243)

(c) Visual samples on REDS4 ( 020 clip)

Figure 7: Visual comparisons with SOTA metho ds on REDS dataset.

5.2 Re-parameterize d Convolutional Kernel

To evaluate the effectiveness of the re-parameterization strategy,
we design a plain topology with two setups: KSNet-uni-plain and
KSNet-bi-plain, denoted as base networks, which only contains a 3
× 3 convolutional layer to substitute the re-parameterized convolu-
tional kernels. We take parameter numbers (Params) and FLOPs at
the training and testing stages as metrics for model analysis. Run-
time (Run), frames per second (fps) and PSNR are used to evaluate
the efficiency and reconstruction performance.

The numerical comparisons are presented in Table 2. It can be
observed that the plain models, including KSNet-uni-plain and
KSNet-bi-plain, have different parameter numbers and FLOPs at
the training stages compared with the re-parameterized model. This
discrepancy arises due to the fact that plain models only contain
a single convolutional kernel in RCB, while the re-parameterized
models contain parallel convolutional kernels. These kernels are re-
parameterized as a single kernel during testing. In other words, the
structure of plain and re-parameterized models remains the same
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Table 2: Ablation study on re-parameterization strategy.

Model Params-training(M) Params-testing(M) FLOPs-training(T) FLOPs-testing(T) Run(ms) fps(1/s) PSNR(dB)
KSNet-uni-plain 3.0 3.0 296.9 296.9 31 32.3 30.50
KSNet-bi-plain 3.0 3.0 296.9 296.9 31 32.3 30.94

KSNet-uni (Ours) 3.4 3.0 320.9 296.9 31 32.3 30.69
KSNet-bi (Ours) 3.4 3.0 320.9 296.9 31 32.3 31.14

Figure 8: Comparisons on the reconstruction performance
and kernel split ratio. Color dots represent the parameter
number of di�erent con�gurations.

Figure 9: Subjective comparisons on the visual quality of
di�erent split ratios.

at the inference stage, leading to equivalent parameters, FLOPs,
and runtime. Moreover, compared to plain models, KSNet-uni and
KSNet-bi achieve respective gains of 0.19 dB and 0.2 dB with only
17.2%additional parameters and 8%additional FLOPs in training.
These results demonstrate that the re-parameterized convolutional
kernel promotes the representation capacity of the network without
imposing extra inference burdens.

5.3 Multiple Flows for Deformable Alignment
To assess the capacity of �ow priors in deformable alignment,
several ablation experiments are conducted on REDS[18] dataset.
Model A to Model D denote di�erent networks, including the single
�ow setup (� =! =� 1 from G=� 1 to G= and(� =! =� 2 from G=� 2 to

G=, and the multi-�ow setup"� . We use runtime (Run) and frames
per second (fps) to evaluate the e�ciency of di�erent setups.

The results are listed in Table 3. Compared to Model A which
solely utilizes the deformable alignment without �ow priors, adding
single �ows (� =! =� 2 and(� =! =� 1 leads to performance gains of
0.28 dB and 0.45 dB for Model B and Model C respectively. These
results indicate that the single �ow prior is e�ective in guiding the
deformable alignment. Furthermore, Model C outperforms Model
B by 0.17 dB, which demonstrates that the accuracy of the single
�ow is dependent on the frame interval and large intervals contain
complex o�sets for �ow estimation. The sub-pixel compensation is
more precise in a shorter frame interval for the single �ow prior.

In addition, Model D uses multiple �ows ("� ), including coher-
ent (� =! =� 2 and(� =! =� 1. It's seen that Model D achieves a sig-
ni�cant gain of 0.81 dB compared to Model A. Compared to Model
B and Model C, Model D achieves respective improvements of 0.53
dB and 0.36 dB with only an additional 1 ms runtime requirement.
These results demonstrate that incorporating more inter-frame in-
formation enhances the deformable alignment with minimal extra
computational cost.

Table 3: Ablation study on di�erent �ow settings.

Mechanisms (� =! =� 2 (� =! =� 1 "�
Run
(ms)

fps
(1/s)

PSNR
(dB)

Model A 8 8 8 26 38.5 30.33
Model B 4 8 8 30 33.3 30.61
Model C 8 4 8 30 33.3 30.78
Model D 8 8 4 31 32.3 31.14

6 CONCLUSION
In this paper, we propose a Kernel Split Network (KSNet) to acti-
vate available kernels for RTVSR. A multi-channel selection unit is
designed to split the low-value and high-value features to reduce
redundancy. Re-parameterized convolutions are applied to the high-
value channels, which can merge the kernel depth dimension and
enhance the representation capacity. An e�cient deformable align-
ment module with multiple �ows is further presented to leverage
the temporal information with a�ordable extra complexity. Experi-
mental results verify the superior performance of KSNet over other
SOTA methods in terms of runtime and reconstruction quality.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Devel-
opment Program of China (Grant No. 2022YFE0129200) and the
National Natural Science Foundation of China (Grant No.61972028,
61902022, and 62120106009).



Kernel Dimension Matters: to Activate Available Kernels for Real-time Video Super-Resolution MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Bahetiyaer Bare, Bo Yan, Chenxi Ma, and Ke Li. 2019. Real-time video super-

resolution via motion convolution kernel estimation. Neuro computing 367 (2019),
236–245.

[2] Jose Caballero, Christian Ledig, Andrew P. Aitken, Alejandro Acosta, Johannes
Totz, Zehan Wang, and Wenzhe Shi. 2017. Real-time video super-resolution with
spatio-temporal networks and motion compensation. In CVPR . 2848–2857.

[3] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2021.
BasicVSR: The search for essential components in video super-resolution and
beyond. In CVPR . 4947–4956.

[4] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. 2022.
BasicVSR++: Improving video super-resolution with enhanced propagation and
alignment. In CVPR . 5972–5981.

[5] Dario Fuoli, Martin Danelljan, Radu Timofte, and Luc Van Gool. 2023. Fast online
video super-resolution with deformable attention pyramid. In ACCV . 1735–1744.

[6] Dario Fuoli, ShuhangGu, and Radu Timofte. 2019. Efficient video super-resolution
through recurrent latent space propagation. In ICCV W . 3476–3485.

[7] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian.
2020. Video super-resolution with recurrent structure-detail network. In ECCV .
645–660.

[8] Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory Slabaugh, Chunjing
Xu, Ya-Li Li, Shengjin Wang, and Qi Tian. 2020. Video super-resolution with
temporal group attention. In CVPR . 8008–8017.

[9] Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. 2020. Revisiting temporal
modeling for video super-resolution. arXiv preprint arXiv:2008.05765 (2020).

[10] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR .

[11] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. 2017.
Deep laplacian pyramid networks for fast and accurate super-resolution. In CVPR .
624–632.

[12] Feng Li, Huihui Bai, and Yao Zhao. 2020. Learning a deep dual attention network
for video super-resolution. IEEE TIP 29 (2020), 4474–4488.

[13] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.
Pruning filters for efficient convnets. In ICLR .

[14] Ce Liu and Deqing Sun. 2013. On Bayesian adaptive video super resolution. IEEE
TPAMI 36, 2 (2013), 346–360.

[15] Chengxu Liu, Huan Yang, Jianlong Fu, and Xueming Qian. 2022. Learning
trajectory-aware Transformer for video super-resolution. In CVPR . 5687–5696.

[16] Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, and Gangshan Wu. 2020. Residual
feature aggregation network for image super-resolution. In CVPR . 2359–2368.

[17] Ilya Loshchilov and Frank Hutter. 2016. SGDR: stochastic gradient descent with
warm restarts. arXiv Preprint arXiv:1608.03983 (2016).

[18] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son,
Radu Timofte, and Kyoung Mu Lee. 2019. NTIRE 2019 challenge on video deblur-
ring and super-resolution: Dataset and study. In CVPRW .

[19] Anurag Ranjan and Michael J Black. 2017. Optical flow estimation using a spatial
pyramid network. In CVPR . 4161–4170.

[20] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In CVPR . 1874–1883.

[21] Xin Tao, HongyunGao, Renjie Liao, JueWang, and Jiaya Jia. 2017. Detail-revealing
deep video super-resolution. In ICCV . 4472–4480.

[22] Longguang Wang, Yulan Guo, Zaiping Lin, Xinpu Deng, and Wei An. 2019.
Learning for video super-resolution through HR optical flow estimation. In
ACCV . 514–529.

[23] Longguang Wang, Yulan Guo, Li Liu, Zaiping Lin, Xinpu Deng, and Wei An. 2020.
Deep video super-resolution using HR optical flow estimation. IEEE TIP 29 (2020),
4323–4336.

[24] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019.
EDVR: Video restoration with enhanced deformable convolutional networks. In
CVPRW .

[25] Zhongyuan Wang, Peng Yi, Kui Jiang, Junjun Jiang, Zhen Han, Tao Lu, and
Jiayi Ma. 2018. Multi-memory convolutional neural network for video super-
resolution. IEEE TIP 28, 5 (2018), 2530–2544.

[26] Bin Xia, Jingwen He, Yulun Zhang, Yucheng Hang, Wenming Yang, and Luc
Van Gool. 2022. Residual sparsity connection learning for efficient video super-
resolution. arXiv preprint arXiv:2206.07687 (2022).

[27] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.
Video enhancement with task-oriented flow. IJCV 127, 8 (2019), 1106–1125.

[28] Bo Yan, Chuming Lin, and Weimin Tan. 2019. Frame and feature-context video
super-resolution. In AAAI , Vol. 33. 5597–5604.

[29] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Tao Lu, and Jiayi Ma. 2020.
A progressive fusion generative adversarial network for realistic and consistent
video super-resolution. IEEE TPAMI 44, 5 (2020), 2264–2280.

[30] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, Tao Lu, Xin Tian, and Jiayi
Ma. 2021. Omniscient video super-resolution. In ICCV . 4429–4438.

[31] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. 2019. Pro-
gressive fusion video super-resolution network via exploiting non-local spatio-
temporal correlations. In ICCV . 3106–3115.

[32] Xinyi Ying, Longguang Wang, Yingqian Wang, Weidong Sheng, Wei An, and
Yulan Guo. 2020. Deformable 3D convolution for video super-resolution. IEEE
SPL 27 (2020), 1500–1504.

[33] Yubin Zeng, Zhijiao Xiao, Kwok-Wai Hung, and Simon Lui. 2021. Real-time video
super resolution network using recurrent multi-branch dilated convolutions.
Signal Pro cessing: Image Communication 93 (2021), 116167.

[34] Yulun Zhang, HuanWang, Can Qin, and Yun Fu. 2021. Aligned structured sparsity
learning for efficient image super-resolution. In NeurIPS , Vol. 34. 2695–2706.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Plain Video Super-resolution
	2.2 Real-time Video Super-resolution

	3 Proposed Method
	3.1 Overview
	3.2 Kernel-split Strategy
	3.3 Deformable Alignment with Multiple Flow

	4 EXPERIMENT
	4.1 Datasets and Implementation Details
	4.2 Comparisons with State-of-the-Art

	5 Ablation Study
	5.1 Kernel Split Ratio
	5.2 Re-parameterized Convolutional Kernel
	5.3 Multiple Flows for Deformable Alignment

	6 CONCLUSION
	Acknowledgments
	References

