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Abstract
Virtual reality (VR) and augmented reality (AR) applications are becoming
increasingly prevalent. However, constructing realistic 3D hands, especially
when two hands are interacting, from a single RGB image remains a major
challenge due to severe mutual occlusion and the enormous diversity of hand
poses. In this article, we propose a disturbing graph contrastive learning strat-
egy for two-hand 3D reconstruction. This involves a graph disturbance network
designed to generate graph feature pairs to enhance the consistency of the
two-hand pose features. A contrastive learning module leverages high-quality
generative features for a strong feature expression. We further propose a similar-
ity distinguish method to divide positive and negative features for accelerating
the model convergence. Additionally, a multi-term loss is designed to balance the
relation among the hand pose, the visual scale and the viewpoint position. Our
model has achieved state-of-the-art results in the InterHand2.6M benchmark.
Ablation studies show the model’s great ability to correct unreasonable hand
movements. In subjective assessments, our graph disturbance learning method
significantly improves the construction of realistic 3D hands, especially when
two hands are interacting.
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1 INTRODUCTION

With the development of virtual reality and augmented reality (VR/AR), hand poses are widely used for virtual-real
interaction in many scenarios. Recently, hand shape reconstruction, which is considered an extension of hand pose esti-
mation, has drawn a lot of attention due to its realistic demonstration. Previous studies1,2 have successfully employed 3D
hand techniques to visualize hand joints. However, visualizing two interacting hands still presents significant challenges
(Figure 1).

Many existing studies have concentrated on single-hand reconstruction from RGB,1-4 depth,5 or sparse keypoints.6,7

When dealing with interacting two-hand reconstruction, these single hand-based methods have poor performance, since
it increases the difficulty including inter-hand collisions and mutual occlusions. Recently, some large-scale interacting
hand datasets are released to support the two-hand shape reconstruction. Two-hand-shape-pose8 and IHMR9 reconstruct
two-hands by estimating MANO10 parameters, which are later mapped to triangular hand meshes using a pre-defined
statistical model (i.e., MANO). IntagHand11 directly regresses a fixed number of mesh vertex coordinates using a graph
convolutional network (GCN). Nevertheless, few effective methods are proposed to resolve the problem of two-hand 3D
reconstruction, as the complex occlusion and deformation occur from the interaction of two hands.

In this article, we present a graph contrastive learning based approach to reconstruct two interacting hands, where an
explicit graph disturbing strategy is performed at the feature level to augment the hand feature. The explicit disturbances
change the external properties of the hand graph, such as graph dimension, graph edge and some feature noise. To effec-
tively utilize these features, we incorporate a graph contrastive learning for generating strong hand-feature expression.
We also propose a similarity distinguish approach to divide positive and negative features for accelerating the model con-
vergence. Finally, a new loss function is designed to enhance 3D visual quality by balancing relation among the hand
pose, the visual scale, and the viewpoint position. Experimental results prove that our approach achieves a qualitative
improvement compared to existing methods on subjective and objective evaluation.

F I G U R E 1 Interactive and non-interactive hand shape reconstruction from an RGB image. Geometric deformation occurs in case of
the two-hand interaction, which limits visual quality of 3D hand reconstruction.
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Overall, our contributions are summarized as follows:

• We propose a novel graph disturbance learning to solve the problem of 3D two hands reconstruction by generating
graph feature pairs without compromising consistency to hand pose. Explicit as well as implicit graph disturbance is
added, which improves the expression of the features.

• We incorporate a scheme of similarity control in order to smooth the learning curve and reduce divergence within the
contrastive learning structure.

• We design a multi-term loss function that deals with the pose, the scale and the camera parameter separately so that
the model can balance the weight of each task.

2 RELATED WORKS

According to different downstream task, 3D hand field can be categorized into three: (1) 3D hand pose estimation; (2) 3D
hand shape reconstruction, (3) hand-object interactions. There are numerous datasets12-18 proposed these years of above
three, which greatly boost the machine understanding of human hands.

2.1 3D hand pose estimation

Previous works mainly focus on the depth domain19-22 and the RGB domain.1,3,15,22-25 Compared with 2D hand, 3D hand
pose has more complexity and lack one dimension of information for single RGB naturally. Recently, 3D hand pose esti-
mation from a monocular RGB image has achieved great progress.18 To alleviate the confusion of uniform appearance in
hands, the method in Reference 26 uses ResGCN based refinement and conditional adversarial learning scheme to fully
exploit hand features. Reference 27 associates keypoints in the heatmap with hand joints using multi-head self-attention
to predict complex hand interactions. The work of Reference 28 shows that contrastive training scheme extracts better
hand feature representation especially for those vague or easily confused cases.

2.2 Graph CNN based hand shape reconstruction

GCN29 has been proved that it is stable to convey 3D hand shape information with less computational expense. Refer-
ence 2 proposed a pipeline to make mesh generation from coarse to precise via GCN in hand shape reconstruction. In
Reference 30, RGB images are encoded into embeddings of a graph morphable model, which helps the reconstruction
of 3D hand from RGB space. These two works mentioned above are the first to construct 3D hand mesh by GCN, and
both stand for the great ability of GCN in hand shape reconstruction. After them, GCN is widely used in this aera. Ref-
erence 31 designs two transformer-based modules to predict the shape of hands at the occlusion part. Reference 11 adds
cross-hand attention modules behind the GCN operation within three blocks to refine the representation of two-hand
interactions.

2.3 Contrastive learning

Self-supervised methods have been intensively studied in recent years. As one of them, contrastive learning is compet-
itive due to its simple structure as well as high performance. Reference 32 makes it possible to catch up supervised
methods in image classification using a simple framework of contrastive learning. The work of Reference 33 shows that
pretraining with contrastive learning can also boost the performance of fine-tuning on a few labeled dataset. Reference
34 builds a dynamic dictionary with a queue and a moving-averaged encoder to enable a large and consistent dictionary
that facilitates contrastive unsupervised representations learning. While these works rely on hard negative samples, Ref-
erence 35 cast contrastive pairs only using positive samples via a momentum encoder trained by the parameter update
strategy of moving average, which makes pretraining easier and more friendly to low memory devices. These classi-
cal contrastive learning methods above all focus on the encoding of original data to extract better representation while
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our point is on the decoder. Before this article, Reference 36 builds hand representation by making expressive positive
pairs on multiview images. They take the images of one hand in multiviews as positive samples that share the identical
inherent representation, and learn these representations by the similar method of Reference 34. However, the geomet-
ric property of hands is not fully extracted and the contrastive pretraining cannot get regular performance when deals
with complex hand poses or two-hand interactions. To solve these problems, we introduce graph contrastive learning to
the field of 3D hand pose estimation and shape reconstruction in this article. As for graph contrastive learning, exist-
ing methods37-41 excavate inherent features on graph in contrastive manners that inspire us utilize it in hand graph
domain. We use a simple but powerful framework named SimSiam42 that combines the advantages of classical con-
trastive learning, and mixes augmentations in hand graph domain to learn geometry-structured hand representation
deeply.

3 METHODOLOGY

3.1 Overview

An overall structure of our model is illustrated in Figure 2. The main pipeline at the top of the figure shows the
main workflow of the hand shape reconstruction task, which can be summarized as image feature extraction, graph
feature conversion, disturbing graph contrastive learning and MANO-hand construction. The disturbing graph con-
trastive learning network (DGCLNet) module utilizes graph contrastive learning to generate pairs with consistent hand
pose information, which is specially designed for graph-level visual contrastive learning task. Note that DGCLNet
is only used to train the GCN, which means that DGCLNet are removed except the inside GCN during evaluation.

F I G U R E 2 Architecture overview. Given an RGB image, our model uses ResNet-50 for feature extraction and then the feature is divided
into left hand and right hand via positional embedding. Both of the hand feature are further processed by two independent MLP layers, and
build up the graph feature using the knowledge of Laplacian matrix. Next our DGCLNet makes disturbance by regenerating the graph feature
through a graph u-net.43 The pair of graph feature is passed through the same GCN, and the similarity between them is maximized. Finally
the graph feature of original branch is thrown into the up sample layer to get the position of 778 vertices in standard MANO10 way.
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The similarity distinguish is an extended module of DGCLNet to calculate similarity of a pair precisely from a feature-pose
pool, and makes the model converge faster and better. Detailed information of the pipeline will be discussed in
this section.

3.2 Disturbing graph contrastive learning

Our model tackles the challenging visual task of two-hand shape reconstruction in a simply constructed end-to-end frame-
work. The graph contrastive learning modules are proved to well decode image embeddings to hand mesh in the form of
graph representation.

3.2.1 Explicit graph disturbing strategy

Naturally, we consider using basic image-to-image data augmentation methods to perturb the target image features. In
the location of the graph u-net in DGCLNet depicted in Figure 2, we applied the following four types of disturbance
operations to the model. (a) Random mask on feature dimension. (b) Random noise on feature space. (c) Add random
edges on graph. (d) Flip the edges on graph. After disturbance is added, the shared GCN processes the feature pair and a
loss function is used to maximize the similarity of them.

However, there is an essential problem on steps above that is whether the intrinsic essence is changed by disturbance.
It is well known that classical contrastive method does not change the intrinsic essence because the disturbance is mainly
pixel-level and the effect of the disturbance makes slightly different on feature level. Therefore, the feature vector extracted
by encoder maintain its consistency and contrastive method works out. But now we have the graph features distorted
which makes it possible that the consistency of different branches is broken.

3.2.2 Disturbing graph contrastive learning network

To avoid this problem, we design a new contrastive structure to generate pairs of disturbance as Figure 2 described, which
corresponds to the Lself_contrast. The core of DGCLNet is a generative neural network essentially, which can be noted as
Fgen. And we use graph u-net43 in this article. The input of DGCLNet G is the original graph features which built by
the previous network, and ̂G is the graph features after disturbance. All G are normalized before use, but for the sake of
brevity, this step is omitted in the formula. Simply, we have

̂G = Fgen(G), (1)

The two graph features G, ̂G are considered as a contrastive pair just like other contrastive learning method. Fgen replaces
those four kinds of simple graph-level operations above and the other setting remains the same. Therefore, the model
feeds the contrastive pairs to the main GCN decoder and get graph features with lower feature dimension noted as Gk, ̂Gk.

Gk = GCN(G), ̂Gk = GCN( ̂G), (2)

Gk, ̂Gk are actually in a pool of features and poses, which accounts for their subscript. The similarity can be predicted as

S = Gk ⋅ ̂G⊤

k , (3)

The S here describes the similarity between one graph feature and its generative copy. Gk is passed to next part of the
model while all other features in DGCLNet are abandoned.

But how to train DGCLNet? DGCLNet is also trained in end-to-end manner. In order to preserve pose information
during training, we innovatively add a linear MLP after ̂G to predict hand pose labels which is taken as a subtask of hand
reconstruction.

Jk = MLP( ̂G). (4)
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It is because of the subtask that G, ̂G are forced to maintain sufficient supervised information while G cannot be identical
with ̂G due to the bottleneck structure of DGCLNet. Then we get a disturbance reproduction without losing the intrinsic
essence of the hand pose naturally, which ensures the consistency that the contrastive learning scheme needs. Besides,
the feature output by the graph u-net will not be identical with the input because of the bottleneck structure. Therefore
this operation can be considered as disturbing. Note that the DGCLNet is only used during training, our goal is to get a
great GCN decoder. The simplicity of the model during inference is also one of our advantages.

3.3 Similarity distinguish

Based on the pre-estimate relative hand joints location, we intend to extend to the contrastive space of positive and
negative samples, which can improve the cross-pose contrastive learning performance. According to the general con-
trastive learning paradigm, the ground truth of similarity between a positive sample pair is set to 1, while for a
negative sample pair it is set to 0. To express it in a neat form, assuming similarity between a random pair from a
feature-pose pool is noted by Sp. The pool is defined as a dictionary of extracted features and their corresponding 3D poses
as34 did.

Sp[m,n] = Gm ⋅ G⊤

n , (5)

And we need it equals to 1 when the two of the pair are positive, equals to 0 when negative, which means the quantity
of the similarity is discrete. However, we can make it continuous by defining a ground truth of similarity, which is a real
number between 0 and 1. The pre-estimate relative hand joints location, noted J, can be used to build the ground truth
of similarity. Suppose we have Jm and Jn, the

Sg[m,n] = Jm ⋅ J⊤n , (6)

where Sg is the ground truth similarity of Sp.

3.4 Loss functions

The loss functions we implement in this article can be divided into three categories, main training objective, auxiliary
training objective, and contrastive training objective. The 𝜆s noted in the following formulas are hyper-parameters to
balance the losses.

L = Lmain + Lauxiliary + LDGCLNet. (7)

3.4.1 Main training objective

The main training objective contains three parts, 3D hand joints loss, 3D hand mesh vertices loss, and 2D hand joints
loss. These three losses make sure the model performs a basic level of hand estimation. This part of the loss is calculated
by minimizing the distance between the results of the main pipeline and the ground truth label.

Lmain = 𝜆1L3D joints + 𝜆2L3D verts + 𝜆3L2D joints. (8)

Note that the location of 3D hand joints and 3D hand mesh vertices is aligned with a root joint and is scaled by a length
parameter. Therefore the two loss only describe the pose information of hand. The absolute position information and the
scale information are learned by 2D hand joints loss. Besides, the camera parameter and rotation matrix are also learned
by 2D hand joints loss, which can make projections to the 2D plane of images for the use of demonstration. We use L1
loss for all the three losses of the main training objective. In detail, it is L1 distance between estimated results and ground
truth labels.
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3.4.2 Auxiliary training objective

The auxiliary training objective contains three parts, length loss, consistent loss, and transition loss. These three parts
improve the model performance in some aspects.

Lauxiliary = 𝜆4Llength + 𝜆5Lconsistent + 𝜆6Ltransition, (9)

Lconsistent = ||Jk − Jk||1, (10)

The length loss here refers to the distance between joints. It can not only learn the scale of the hands but also can reg-
ularize the geometric structure of the hands. The consistent loss means the consistency between the graph features and
the hand pose that the feature represents. With the help of the consistent loss, the model will be more stable and inter-
pretable. The difference between the consistent loss and the 3D joints loss mentioned above is whether the GCN module
is used. Consistent loss is calculated linearly from the feature generated by graph u-net while 3D joints loss is from MANO
upsample layer. The former only contains pose information while the latter decodes pose information to precise 3D loca-
tion. It can be calculated by the L1 distance between joint locations Jk and ground truth labels Jk. And the transition loss
is the relative translation of each pair of vertices from left and right hand, which is a widely used restriction for two hand
reconstruction mission.

3.4.3 Contrastive training objective

LDGCLNet = −𝜆7(Lcross_contrast + Lself_contrast), (11)

Lcross_contrast = ||Sp − Sg||2, (12)

Lself_contrast = log
exp(S∕𝜏)

∑
exp(S∕𝜏)

. (13)

Note that Lcross_contrast and Lself_contrast describe cross-pose contrastive loss and self-pose contrastive loss. The cross-pose
loss is evaluated by the similarity distinguish module, which contains Sg and Sp. The self-pose contrastive loss is
calculated by maximizing the similarity of input and output of the graph u-net. In order to utilize large enough
batch size in our implementation, we adopt MoCo-like34 dictionary settings to save the graph features of recent
batches.

4 EXPERIMENTS

4.1 Experimental settings

4.1.1 Implementation details

Our network is implemented using Pytorch. And the main model structure as well as the training pipeline is based on
Pytorch lightning. All experiments are conducted on 4 NVIDIA RTX 2080ti GPUs. Training minibatch size is set as 32 and
Adam is used for model optimization. The learning rate is initialized with 1 × 10−4, and decays by half when the training
loss decreases less than 10−4 continuously in 4 epoch. The minimum of learning rate is set by 10−6. The whole training
takes 50 epochs, which takes about 2 days. We take input image of 256 × 256. The encoder is ResNet50 pretrained on
ImageNet. And the GCN decoder is Chebyshev spectral graph CNN that is initialized randomly. 𝜆1 = 𝜆2 = 10 for 3D joints
loss and 3D vertices loss. 𝜆3 = 𝜆4 = 10−3 for 2D joints loss and length loss. 𝜆5 = 𝜆6 = 1 for consistent loss and transition
loss. And 𝜆7 = 10−2 for contrastive loss. The MoCo-like dictionary is implemented by a queue of 2048 and the model
updates momentum.
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T A B L E 1 Comparison with state-of-the-art methods on InterHand2.6M.

Methods MPJPE↓ MPVPE↓

Boukhayma et al.1 16.63 17.98

Zhang et al.8 13.48 13.95

Rong et al.9 13.56 -

Kim et al.44 12.08 -

Meng et al.45 10.97 -

Li et al.11 8.79 9.03

Ours 8.86 9.14

Note: The MPJPE and MPVPE are reported in mm. Bold values mean the top two greatest performance.

4.1.2 Evaluation metrics

As shown in Table 1, we used the mean per joint position error (MPJPE) to evaluate the hand pose estimation performance.
MPJPE is defined as the mean Euclidean distance between ground truth and predicted 3D joint positions. Similarly the
mean per vertex position error (MPVPE) is used to evaluate the hand shape reconstruction performance. Note that MPJPE
and MPVPE in this article are reported after aligning the root joint and scaling the length of the middle metacarpal for
fair comparison. All the measures mentioned above are calculate in millimeters.

4.2 Dataset

Our model is trained and tested on InterHand2.6M18 following the dataset settings of Reference 11. 366K training sam-
ples and 261K testing samples are picked out from the original InterHand2.6M dataset. And these samples are all the
interacting two-hand data with annotation by both human and machine. The image samples are cropped and resize to
256 × 256 resolution .

4.3 Qualitative results

Figure 3 shows our qualitative results for hand shape reconstruction. We compare the performance of our model
to state-of-the-art reconstruction methods, which can be integrated with virtual reality (VR) or augmented real-
ity (AR) applications. It is clear that our model offers a much better result in the details of processing double
hands, especially the interactions among them, which makes the hand mesh closer to the natural state. Our model
demonstrates the ability to successfully capture and reconstruct complex interactions of two hands. The first col-
umn of our qualitative results indicates that our model has fewer collisions. The results of Columns 2 and 4
indicate that the performance of our model is superior when the two hand meshes are close to each other, yet
not making contact. Columns 3 and 5 indicate that our model results in a better matching between the hand
mesh and the hand mask, which implies enhanced location accuracy. The last column of our results highlights
that our model has a deep understanding of hand occlusion, and is able to reconstruct detailed hand poses
competently.

4.4 Ablation study

4.4.1 Baseline GCN

Before implementing our contrastive method, we run a GCN decoder as a baseline for following comparison. The result
is shown in Table 2. The GCN is built on the base of References 2 and 11. Moreover, the graph Laplacian matrix obtained
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F I G U R E 3 Qualitative results of our method on InterHand2.6M test dataset and comparison with SOTA method proposed by Li et al.11

T A B L E 2 Ablation study of module choice on InterHand2.6M.

MPJPE↓ MPVPE↓

GCN baseline 9.97 10.63

GCN + random mask 10.35 10.65

GCN + random noise 10.56 10.89

GCN + random edge 10.59 10.93

GCN + flip edge 10.92 11.30

GCN + DGCLNet 9.02 9.31

GCN + DGCLNet (ours)a 8.86 9.14

Note: Bold values mean the top two greatest performance.
aSimilarity distinguish strategy is used.

from MANO-pretraining was fixed during training. We observe that the baseline is strong, but may struggle with fingertip
alignment and encountering obstacles.

4.4.2 Adding contrastive module

We tested the contrastive module with both EGD and DGCLNet based on GCN baseline. The result is shown in
Table 2. As discussed in Section 3.4, explicit graph disturbing methods may lead to a loss of consistency for graph
features which accounts for their poor performance. We see that DGCLNet module reduces the error by 1.6 mm.
Thanks to the disturbance network, the model is able to learn from slightly different graph features without com-
promising the consistency of the pose and feature. The qualitative results are given in Figure 4. It is clear that
our DGCLNet module improves the baseline by reducing collisions, resulting in a hand mesh that is more realis-
tic and lifelike. Besides, the overlap of hand mask is more precise, which indicates the higher performance in visual
comprehension.
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F I G U R E 4 Qualitative ablation study on InterHand2.6M.

4.4.3 Similarity distinguish

Our similarity distinguish method makes the target of contrastive pairs more reliable and yields better robustness while
testing. Contrastive learning can be notoriously difficult to converge and can easily become trapped in severe oscilla-
tions. We manage to solve this problem by making the similarity of the pose of embedded feature the target similarity of
embedded graph feature. The ablation result is shown in Table 2.

5 CONCLUSION

In conclusion, this article introduces a novel graph contrastive method for two-hands 3D reconstruction from a single
image. To deal with challenges such as hand-hand occlusion and the homogeneous and self-similar appearance of hands,
we introduce novel graph contrastive method to enhance model ability to rebuild 3D topographical structure. More specif-
ically, an explicit graph disturbing is tried but does not perform well due to its inconsistency. To resolve that issue, a
DGCLNet was proposed to force the features of disturbed data to remain consistent. A similarity distinguish strategy was
further used instead of the discrete settings which made the model more robust and yielded better results. Moreover, a
multi-term loss is designed to balance the relation among the hand pose, the visual scale and the viewpoint position.
Experiments validate the superiority of our proposed method over the state-of-the-art methods.
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