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 A B S T R A C T

Domain Adaptive Semantic Segmentation (DASS) aims to adapt a pre-trained segmentation model from a 
labeled source domain to an unlabeled target domain. Previous approaches usually address the domain 
gap by consistency regularization which is implemented based on the augmented data. However, as the 
augmentations are often performed at the input level with simple linear transformations, the feature rep-
resentations suffer limited perturbation from these augmented views. As a result, they are not effective for 
cross-domain consistency learning. In this work, we propose a new augmentation method, namely contextual 
augmentation, and combine it with contrastive learning approaches from both the pixel and class levels to 
achieve consistency regularization. We term this methodology as Context Perturbation for DASS (CoPDASeg). 
Specifically, contextual augmentation first combines domain information by class mix and then randomly 
crops two patches with an overlapping region. To achieve consistency regularization with the two augmented 
patches, we focus on both pixel and class perspectives and propose two parallel contrastive learning paradigms 
(i.e., pixel-level contrastive learning and class-level contrastive learning). The former aligns the pixel-to-pixel 
feature representations, and later aligns class prototypes across domains. Experimental results on representative 
benchmarks (i.e., GTA5 → Cityscapes and SYNTHIA → Cityscapes) demonstrate that CoPDASeg improves the 
segmentation performance over state-of-the-arts by a large margin.
. Introduction

Semantic segmentation (Long et al., 2015; Chen et al., 2017; Zhao 
t al., 2017; Wang et al., 2019; Yuan et al., 2019; Chen and Hu, 2021; 
u et al., 2023) is one of the most critical tasks in computer vision. It 
ims to predict the per-pixel classification of an input image. Thanks 
o the advancements in deep learning (Krizhevsky et al., 2017; Long 
t al., 2015; Huang et al., 2017; Song et al., 2019), the performance of 
emantic segmentation has witnessed remarkable improvements (Chen 
t al., 2017; Huang et al., 2019; Liu et al., 2019) in recent years. 
owever, the state-of-the-art methods require large amounts of pixel-
ise annotations from diverse scenarios to enhance their generalization 
apabilities. The process of pixel-wise annotation is labor-intensive 
nd time-consuming. For example, annotating a single high-resolution 
mage from the Cityscapes (Cordts et al., 2016) dataset consumes more 
han 1.5 h on average. One promising direction to circumvent this prob-
em is to use more accessible synthetic datasets, such as GTA5 (Richter 
t al., 2016) and SYNTHIA (Ros et al., 2016). Unfortunately, models 
rained on synthetic data face challenges when adapted to real data on 
ccount of the domain gap. The domain gap is caused by various factors 
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like layout, appearance, etc. Domain Adaptive Semantic Segmentation 
is considered as a plausible solution to ease the synthetic-to-real domain 
gap, hence reducing the annotation cost.

The initial researches in DASS focus on addressing the domain 
gap through domain adversarial training. Specifically, these methods 
aim to align the distribution between source and target domains at 
different levels, such as feature-level (Chen et al., 2019b; Pan et al., 
2020; Kim and Byun, 2020), output-level (Melas-Kyriazi and Manrai, 
2021; Luo et al., 2019; Tsai et al., 2018; Chen et al., 2021) and 
image-level (Dundar et al., 2020; Hoffman et al., 2018; Yang and 
Soatto, 2020). However, these methods strive for marginal distribution 
alignment between the source and target images at the cost of ignoring 
the crucial aspect of semantic consistency. As a consequence, it poten-
tially leads to semantic confusion between different classes, particularly 
in cases where target supervision is absent. Furthermore, adversarial 
training often introduces the use of an additional domain discriminator 
or style-transfer network, which introduces additional computational 
costs.
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Fig. 1. The objective of consistency training is to guarantee the consistent predictions of the model regardless of the input perturbations, thereby enhancing 
the robustness of the learned model. (a) Previous methods for consistency training usually employ low-level augmentations (flipping, color jittering, Gaussian 
blurring, etc) as perturbations for unlabeled images. (b) Our proposed context perturbation uses different contexts as the perturbations.
Subsequent researches employ the self-training strategy (Tranheden 
et al., 2021; Lian et al., 2019; Zhang et al., 2017; Zou et al., 2019) 
to minimize semantic confusion. The pseudo labels are produced ac-
cording to various clues, e.g., classifier confidence (Corbiere et al., 
2021; Zou et al., 2019; Wang et al., 2021b), feature distance (Zhang 
et al., 2021), etc. More recent studies employ consistency regulariza-
tion (Tranheden et al., 2021; Araslanov and Roth, 2021) to mitigate 
the bias in pseudo labeling. It reinforces the consistency between two 
views, namely the original view and the corresponding augmented 
view, as shown in Fig.  1(a). These augmentations primarily encompass 
linear transformations, such as kernel filters, color space transforma-
tion, geometric transformation and so on. These manually designed 
methods are effective, reproducible and reliable for encoding color and 
geometric space invariance within the original dataset. However, recent 
researches on self-supervised learning (Zhang et al., 2019; Gidaris et al., 
2018) have uncovered that these low-level transformations pose little 
change and are effortlessly accommodated (i.e., overfitted) by deep 
neural networks. This observation highlights the potential insufficiency 
of basic image processing methods in effectively perturbing the input 
distribution.

To solve this issue, in this paper, we devise more effective pertur-
bations and propose contextual augmentation to strengthen consistency 
regularization, as shown in Fig.  1(b). Specifically, contextual augmen-
tation mixes the images from two domains and crops two patches 
with a certain overlapping region. The underlying rationale is that 
the learned representations are influenced by varying contexts, even 
within the same region. Contextual augmentation introduces more 
robust perturbations in the feature space compared to basic image 
manipulation, thereby providing enhanced benefits for subsequent con-
sistency training. To achieve consistency regularization, we consider it 
from two perspectives and realize them with two contrastive learning 
paradigms, i.e., pixel-to-pixel and prototype-to-prototype contrastive 
learning. Pixel-to-pixel contrastive learning aligns pixel features at 
corresponding locations within the overlapped regions. Prototype-to-
prototype contrastive learning facilitates the alignment of prototypes 
belonging to the same class across different domains. As a result, these 
two contrastive learning schemes work together to promote consistency 
under contextual augmentation, effectively mitigating the domain gap. 
The proposed method, namely Context Perturbation for DASS (CoP-
DASeg), adopts a one-stage pipeline without extra special training 
techniques, which is simple but effective. Different from Lai et al. 
(2021), Chen et al. (2023) achieving it on the unlabeled domain, our 
contextual augmentation is based on the mixed labeled and unlabeled 
domain. The feature space is modeled on the mixed domain, which 
is facilitated to achieve cross-domain alignment in subsequent pixel-
level alignment. In addition, we propose the prototype-to-prototype 
contrastive loss to further enhance cross-domain semantic consistency.

Extensive experiments and ablation studies are conducted on repre-
sentative benchmarks for DASS, i.e., GTA5 → Cityscapes and SYNTHIA
→ Cityscapes. The results show that our approach consistently outper-
forms the state-of-the-art methods. To be specific, on hard classes with 
lower frequency, our method boosts the performance by a large margin. 
The main contributions of this paper can be summarized as:
2

• We propose a new augmentation method, i.e., contextual augmen-
tation, which introduces strong and effective perturbations for 
cross-domain consistency regularization.

• To achieve consistency regularization under contextual augmen-
tation, we propose pixel-to-pixel and prototype-to-prototype con-
trastive losses, which align feature representation at both the 
pixel and class levels.

• Extensive experiments on popular semantic segmentation bench-
marks show that the proposed CoPDASeg achieves superior per-
formance on the target domain over state-of-the-arts. It espe-
cially shows outstanding results on long-tailed classes such as 
‘‘motorbike’’, ‘‘train’’, ‘‘light’’, etc.

2. Related work

2.1. Semantic segmentation

Semantic segmentation is a critical task in computer vision that 
aims to divide an image into non-overlapping regions representing 
various semantic categories. The advent of deep learning leads to 
remarkable advances in semantic segmentation, with Long et al. (2015) 
pioneering the use of convolutional neural networks for this task. Some 
methods further improve performance by enlarging receptive fields or 
capturing context information. For example, Chen et al. (2017) propose 
dilated convolution to enlarge the receptive field of filters. It incor-
porates a larger context without increasing the number of parameters 
or the amount of computation. Zhao et al. (2017) propose a pyramid 
pooling module that fuses different scale features to capture context 
information. Wang et al. (2019) propose to use CNNs for low-level 
feature extraction and a Structured Random Forest (SRF)-based border 
ownership detector for high-level feature extraction. In recent years, 
attention-based Transformer (Vaswani et al., 2017) has emerged as a 
highly successful approach in the field of Natural Language Processing 
(NLP). Taking inspiration from this, Transformers have been widely 
adopted in various visual tasks, such as image classification (Liu et al., 
2021; Dosovitskiy et al., 2021), object detection (Carion et al., 2020) 
and semantic segmentation (Cheng et al., 2021, 2022). Unfortunately, 
although Transformers show superior performance compared to ResNet 
backbones, their effectiveness heavily relies on a substantial amount of 
pixel-wise annotations. For example, Cityscapes (Cordts et al., 2016) 
and PASCAL VOC (Everingham et al., 2010) consist of more than 
5K and 13K annotated images respectively. To solve this issue, some 
synthetic datasets are proposed such as GTA5 (Richter et al., 2016) and 
SYNTHIA (Ros et al., 2016). However, there is a domain gap between 
real-world datasets and synthetic datasets. As a result, models trained 
solely on synthetic datasets tend to exhibit low performance when 
applied to real-world datasets. In this work, we aim to learn an adaptive 
model that aligns the distribution between source and target domains 
with only the source domain supervision.
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2.2. Domain adaptive semantic segmentation

Currently, the DASS methods can be mainly categorized into two 
groups: the adversarial training ones and the self-training ones. Specif-
ically, the adversarial training network contains two parts which are 
the generator and discriminator. The generator is responsible for gen-
erating the dense predictions or acting as the feature extractor. Mean-
while, the discriminator aims to distinguish the domain of the fea-
tures (Chen et al., 2019b; Pan et al., 2020; Kim and Byun, 2020), 
final outputs (Melas-Kyriazi and Manrai, 2021; Luo et al., 2019; Tsai 
et al., 2018), or images (Dundar et al., 2020; Hoffman et al., 2018; 
Yang and Soatto, 2020). In the AdaptSeg framework (Tsai et al., 2018), 
adversarial training is implemented in the multi-level output space. Tsai 
et al. (2018) align the segmentation results of the source and target 
domains by the adversarial network. Luo et al. (2019) incorporate class-
wise information into their methodology and introduce a category-level 
adversarial network. This approach reduces the weight of the ad-
versarial loss for category-level aligned features while simultaneously 
increasing the adversarial force for poorly aligned ones. Chen et al. 
(2021) propose a classification constrained discriminator, which not 
only addresses the adversarial training issue but also mitigates the 
problem of feature distortion. However, most previous methods usually 
focus on intra-class distributional alignment. By contrast, we attempt 
to explore the relationship between clusters of different categories. We 
set a generic semantic-guided prototype contrast learning method to 
enhance class-wise discriminative information. It minimizes intra-class 
discrepancy and maximizes inter-class margin across the two domains.

Self-training methods typically involve two components: a teacher 
network and a student network. The teacher network is initially trained 
on a labeled source dataset and subsequently utilized to generate high-
confidence pseudo labels for the unlabeled target domain. These pseudo 
labels are then employed for training the student network. However, 
it is noted that pseudo labels frequently contain noise, resulting in 
reduced reliability in terms of their confidence level. Therefore, many 
previous studies (Jiang et al., 2022) strive to enhance the quality of 
pseudo labels and minimize the impact of noise. Mei et al. (2020) 
propose a dynamic approach to estimate a threshold for each semantic 
category of pseudo labels with the intent of decreasing the percentage 
of hard classes. Zhang et al. (2021) calculate the feature distance 
between a sample point and all prototypes, and then reweight its 
corresponding pseudo logits accordingly to effectively eliminate noise. 
Wang et al. (2021a) leverage the guidance from self-supervised depth 
estimation, which is available on both domains, to diminish the domain 
gap. However, the majority of existing methods include complex multi-
stage processes and rely on various training techniques. In contrast, our 
framework accomplishes one-stage and end-to-end adaptation without 
the need for separate pre-processing stages or training techniques.

2.3. Consistency regularization

The key idea behind consistency regularization is that predictions 
on unlabeled instances should not change significantly to perturbations. 
In semi-supervised learning, perturbations are usually derived from 
image augmentations (Xie et al., 2020; Sohn et al., 2020), e.g. kernel 
filters, color space transformation, geometric transformation, etc. For 
DASS, some methods (Chen et al., 2019a; Zhou et al., 2022) utilize 
consistency regularizer to minimize distribution discrepancies at image-
level. DACS (Tranheden et al., 2021) enforces consistency between 
predictions of target and mixed domains (i.e., mixing source and target 
domain images by class-mix Olsson et al., 2021). SAC (Araslanov and 
Roth, 2021) employs standard low-level data augmentations, including 
photometric noise, flipping, scaling, etc, and ensures consistency of 
the semantic predictions across these image transformations. How-
ever, low-level image augmentation is unable to generate significant 
perturbations in the feature space. As a consequence, this limits the 
performance gain brought by consistency regularization. To solve this 
3

issue, we propose contextual augmentation method which introduces 
stronger perturbations in the feature space. Additionally, cross-domain 
consistency regularization is employed to boost the performance of 
DASS. Lai et al. (2021), Chen et al. (2023) propose to utilize different 
contexts to perturb the feature space only on the unlabeled data. 
Different from (Lai et al., 2021; Chen et al., 2023), our contextual 
augmentation is based on the cross-domain mixed image. It aims to 
achieve cross-domain alignment by subsequently pixel-level alignment. 
In addition, we propose the prototype-to-prototype contrastive loss to 
further enhance semantic consistency between domains.

2.4. Contrastive learning

Contrastive learning strategy (Oord et al., 2018) has gained atten-
tion for its promising ability to learn representations without explicit 
supervision. By pulling positive pairs closer and pushing negative pairs 
apart, it has the capacity to greatly enhance representation learning. In 
the semi-supervised semantic segmentation task, Alonso et al. (2021) 
apply pixel-level contrastive training to yield similar feature represen-
tations for intra-class samples across the whole dataset. For DASS, Jiang 
et al. (2022) construct intra-class and inter-class relations by applying 
the contrastive loss on the different class prototypes. Different from 
previous methods (Jiang et al., 2022; Alonso et al., 2021), we construct 
pixel-level and class-level contrastive paradigms. It enhances both the 
pixel-wise and class-wise consistency of the overlapping regions in 
different contexts, respectively.

3. Method

We first introduce our pipeline in Section 3.1. Next, in Section 3.2, 
we describe the process of our proposed contextual augmentation. 
Finally, in Section 3.3 and Section 3.4, we present our pixel-to-pixel and 
prototype-to-prototype contrastive learning strategies, respectively.

3.1. Overview

In the setting of DASS, we have a labeled source domain 𝐷𝑆=(𝑥𝑠, 𝑦𝑠)
and an unlabeled target domain 𝐷𝑇=(𝑥𝑡), where 𝑥𝑠 and 𝑥𝑡 are the input 
images and 𝑦𝑠 is the corresponding annotation of source image. Both 
source domain 𝐷𝑆 and target domain 𝐷𝑇  share the same 𝐶 classes. 
There are two kinds of images in the input batch, i.e., labeled source 
images 𝑥𝑠 and unlabeled target images 𝑥𝑡.

To facilitate the adaptation of the network, our proposed domain 
adaptation pipeline is based on a self-training network (Tarvainen and 
Valpola, 2017) which consists of two different branches, namely the 
student network 𝛩 and the teacher network 𝛩′. The student network is 
composed of a feature extractor 𝛩𝐸 and a classifier 𝛩𝐶 . In addition, 
an additional projection head 𝛩𝑃  is introduced and constitutes the 
auxiliary networks 𝛩𝑃 (𝛩𝐸 ) to map the features to the latent space.

The labeled source images 𝑥𝑠 are randomly cropped and fed into 
the student network 𝛩 to get the predictions 𝑝𝑠 = 𝛩𝐶 (𝛩𝐸 (𝑥𝑠)), which is 
supervised by the ground truth 𝑦𝑠 with the cross-entropy (CE) loss: 

𝑠 = −
𝐻×𝑊
∑

𝑖=1

𝐶
∑

𝑐=1
𝑦(𝑖,𝑐)𝑠 log𝛩(𝑥𝑠)(𝑖,𝑐) (1)

where 𝐻 and 𝑊  represent the height and the width of an image, 𝐶
denotes the number of classes, 𝑖 and 𝑐 indicate the 𝑖th pixel and 𝑐th 
class in image and classes, respectively.

On the other hand, to enhance the domain adaptation, pseudo labels 
𝑦̂𝑇  are generated for target samples 𝑥𝑡 with the teacher network 𝛩′. 
Additionally, a series of data augmentations are applied to the target 
domain images 𝑥𝑡 and obtain new augmented images, denoted as 𝑥𝐴𝑡 . 
Similarly, the pseudo labels 𝑦̂𝑡 are transformed into augmented pseudo 
labels 𝑦𝑡𝐴 at the same time. The augmented samples 𝑥𝐴𝑡  along with their 
corresponding augmented pseudo labels 𝑦̂𝐴 are used as training samples 
𝑡
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Fig. 2. Overview of CoPDASeg. It includes the source domain branch and the target domain branch. The target images 𝑥𝑡 and source images 𝑥𝑠 pass through 
contextual augmentation (A) to get two patches 𝑥𝑡1  and 𝑥𝑡2  with an overlapping region 𝑥𝑜. We achieve consistent alignment on 𝑥𝑜 by our proposed two contrastive 
losses, i.e., 𝑝𝑖𝑥𝑒𝑙 (B) and 𝑝𝑟𝑜𝑡𝑜 (C). In (A), following DACS (Tranheden et al., 2021), a mixed image 𝑥𝑚 is firstly created by having one set of pixels coming 
from 𝑥𝑠, and one set of pixels coming from 𝑥𝑡. Then, we randomly crop two patches with an overlapping region from 𝑥𝑚. Our purpose is to use different context 
information to perturb the overlapping region feature i.e., context perturbation. In (B), we regularize the pixel-wise consistency between 𝑓𝑜1  and 𝑓𝑜2  by computing 
pixel-to-pixel contrast: impelling positive-pair embeddings closer, i.e., two features 𝑓𝑜1  and 𝑓𝑜2  of the same overlapping region 𝑥𝑜 derived from 𝐹𝑝𝑜𝑠1  and 𝐹𝑝𝑜𝑠2 , and 
pushing away the negative embeddings, i.e., the corresponding negative set 𝐹𝑛𝑒𝑔 . In (C), we use two features 𝑓𝑜1  and 𝑓𝑜2  to yield the corresponding prototypes 𝑐

𝑜1
and 𝑐

𝑜2
 to provide semantic guidance. And then, we regularize the prototype-wise consistency between 𝑐

𝑜1
 and 𝑐

𝑜2
. Similarly, we apply prototype-to-prototype 

contrastive learning, which draws positive pair close, i.e., two prototypes with the same class closer, while pushing negative pairs apart, i.e., prototype 𝑐
𝑜1
 and 

𝑐
𝑜2
 keep away from global prototype 𝑐 with different classes.
for 𝛩. The self-training loss, implemented with the cross-entropy loss, 
is then computed as shown below: 

𝑡 = −
𝐻×𝑊
∑

𝑖=1

𝐶
∑

𝑐=1
𝑞𝑡(𝑦𝑡

𝐴)(𝑖,𝑐) log𝛩(𝑥𝐴𝑡 )
(𝑖,𝑐) (2)

where 𝑞𝑡1  denotes the ratio of pseudo label pixels exceeding a threshold 
𝜏 of the maximum softmax probability. Following the approach of 
DACS (Tranheden et al., 2021), to ensure the learning of domain-robust 
features, color jitter, Gaussian blur and ClassMix are adopted as data 
augmentations. The auxiliary networks 𝛩𝑃 (𝛩𝐸 ) are trained on the two 
patches 𝑥𝑡1  and 𝑥𝑡2  by enforcing a consistency of features i.e., 𝑓𝑡1  and 
𝑓𝑡2 . This objective is achieved by minimizing our proposed pixel-to-
pixel and prototype-to-prototype contrastive loss 𝑝𝑖𝑥𝑒𝑙 and 𝑝𝑟𝑜𝑡𝑜. More 
details are presented in Sections 3.3 and 3.4.

As to the teacher network, it is noted that no gradients are back-
propagated into the teacher network. Thus, following the previous 
method (Tarvainen and Valpola, 2017), the weights of teacher network 
𝛩′ are set as the Exponential Moving Average (EMA) of the weights of 
the student network at each iteration 𝑡. 
𝛩′ ← 𝛼𝛩′ + (1 − 𝛼)𝛩 (3)
4

where 𝛼 is a momentum parameter.

3.2. Contextual augmentation

The objective of consistency regularization is to enforce an invari-
ance of the model’s predictions to various perturbations, facilitating the 
learning of robust representations. Instead of simple linear transforma-
tion (Araslanov and Roth, 2021) on original images, we propose context 
perturbations to more effectively disrupt the features and then promote 
model robustness by the subsequent consistency regularization.

Specifically, we devise a novel data augmentation, namely contex-
tual augmentation. Given a source image 𝑥𝑠 and a target image 𝑥𝑡, a 
binary mask 𝑀 is first generated by randomly selecting half of the 
classes in the source image 𝑥𝑠. This mask 𝑀 is utilized to mix the 
source and the target images to generate a mixed image 𝑥𝑚, which is 
formulated as: 
𝑥𝑚 = 𝑀 ⋅ 𝑥𝑠 + (1 −𝑀) ⋅ 𝑥𝑡 (4)

Subsequently, we crop two random patches 𝑥𝑚1
 and 𝑥𝑚2

 from mixed 
images 𝑥𝑚 which are confined to have an overlapping region 𝑥𝑜. Finally, 
𝑥  and 𝑥  are augmented to get 𝑥  and 𝑥  by a series of image 
𝑚1 𝑚2 𝑡1 𝑡2
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augmentations, which include random flip, color jitter and Gaussian 
blur. The procedure for contextual augmentation is shown in Fig.  2(A). 
Similarly, the annotations for the patches 𝑦̂𝑡1  and 𝑦̂𝑡2  are also augmented 
to be in line with augmented input images.

Our contextual augmentation aims to help the network produce 
more robust features against varying environments. As a consequence, 
it effectively reduces the influence of noise existing in the pseudo label 
during the process of self-training and results in considerably better 
performance, as shown in Section 4.2. And each component of our 
contextual augmentation is discussed in Table  4.

3.3. Pixel-to-pixel consistent alignment

To achieve consistency alignment with contextual augmentation, we 
take inspiration from contrastive learning and propose pixel-to-pixel 
contrastive loss. It creates contrastive pairs based on the inter-pixel 
positional information and achieves pixel-to-pixel feature alignment 
across domains.

Specifically, as shown in Fig.  2, given augmented samples 𝑥𝑡1  and 
𝑥𝑡2  created by contextual augmentation, latent features 𝑓𝑡1  and 𝑓𝑡2  are 
extracted from 𝑥𝑡1  and 𝑥𝑡2  by feature extractor 𝛩 and projection head 
𝛩𝑃 . Where the features of the overlapping region 𝑥𝑜 in 𝑓𝑡1  and 𝑓𝑡2  are 
denoted as 𝑓𝑜1  and 𝑓𝑜2 , respectively. The projection head here serves 
as an information bottleneck to preserve the informative contextual 
features. In Table  3, the experiments are conducted to highlight the 
contribution of the projection head.

To realize the pixel-to-pixel contrastive learning, two features 𝑓 𝑖
𝑜1

and 𝑓 𝑖
𝑜2
 at the same location of 𝑓𝑜1  and 𝑓𝑜2  are set as a positive pair, as 

shown in Fig.  3. In addition, the corresponding negative set 𝐹 𝑖
𝑛 is also 

constructed for the 𝑖th feature 𝑓 𝑖
𝑜1
. Therefore for the 𝑖th feature 𝑓 𝑖

𝑜1
, the 

contrastive loss is be defined as: 

𝑐 (𝑓 𝑖
𝑜1
, 𝑓 𝑖

𝑜2
) = log

𝛾1(𝑓 𝑖
𝑜1
⋅𝑓 𝑖

𝑜2
)

𝛾1(𝑓 𝑖
𝑜1
⋅𝑓 𝑖

𝑜2
) +

∑

𝑓𝑛∈𝐹 𝑖
𝑛
𝛾1(𝑓 𝑖

𝑜1
⋅𝑓𝑛)

(5)

where 𝑓𝑛 is the negative pair of 𝑓 𝑖
𝑜1
 and it is sampled from 𝐹 𝑖

𝑛, 𝛾1 denotes 
the exponential function of the cosine similarity 𝑐 between two features 
with a scaling factor 𝑠1: 
𝛾1(𝑓 𝑖

𝑜1
⋅𝑓 𝑖

𝑜2
) = 𝑒𝑥𝑝(𝑠1⋅𝑐(𝑓 𝑖

𝑜1
, 𝑓 𝑖

𝑜2
)) (6)

The construction of a negative sample set 𝐹 𝑖
𝑛 is crucial for con-

trastive learning. The most straightforward method is to take all the 
other pixels as negative samples. However, for the dense predictions on 
all the pixels, there are many pixels from different positions belonging 
to the same class even the same object. It may easily lead to false 
negative pairs between the same class pixels, especially the background 
class or large objects such as the sky and sidewalk. To avoid this, we 
sample all the feature vectors whose classes are different from the 𝑓 𝑖

𝑜1
as a negative sample set 𝐹 𝑖

𝑛. All features come from each mini-batch 
during training: 
𝐹 𝑖
𝑛 = {𝑓𝑛|𝑦̂𝑛 ≠ 𝑦̂𝑖𝑜1} (7)

where 𝑦̂𝑖𝑜1  and 𝑦̂𝑛 denote the pseudo label of 𝑓
𝑖
𝑜1
 and 𝑓𝑛. In this way, 

the features from the different contexts of two patches are leveraged 
to enhance consistency between the overlapping region features 𝑓 𝑖

𝑜1
and 𝑓 𝑖

𝑜2
. As a result, it helps to establish a discriminative inter-class 

feature representation in feature space, which is especially important 
for DASS. Empirically, we observe that more negative samples lead to 
better performance for contrastive learning. Thus, the negative set 𝐹𝑛
is expanded. It is not only from the current image but also from all 
the unlabeled images within the current training batch. Moreover, a 
memory bank is maintained to further increase negative samples. It 
stores the features in the past few batches to get sufficient negative 
samples.

However, the pseudo label produced for the unlabeled target image 
is very noisy, the low-quality noisy samples may have a bad influence 
5

Fig. 3. Visualization of the process of pixel-to-pixel alignment on the two 
augmented patches derived from our contextual augmentation method.

on model optimization. If all the positive feature pairs in the overlap-
ping region are used to calculate the 𝑐 , the less confident pairs 𝑓𝑜1
and 𝑓𝑜2  may corrupt the model. Therefore, to avoid this, a positive set 
𝐹𝑝1  is also constructed for 𝑓𝑜1  to filter out those less confident positive 
samples from 𝑓𝑜2 . Specifically, the maximum probability is computed 
among all the classes in 𝑓𝑜1  and 𝑓𝑜2 , i.e., 𝑝𝑜1 = 𝑚𝑎𝑥(𝛩𝐶 (𝑓𝑜1 )) and 
𝑝𝑜2 = 𝑚𝑎𝑥(𝛩𝐶 (𝑓𝑜2 )), as the confidence of each feature 𝑓𝑜1  and 𝑓𝑜2 . And 
a threshold 𝜏 is set. Only the features 𝑓𝑜2  whose confidence is higher 
than 𝜏 are saved as positive samples. To prevent the more confident 
features from corrupting towards the less confident ones, we further 
filter out the less confident feature 𝑓𝑜2  than 𝑓𝑜1  from the positive set 
𝐹𝑝1 . Therefore, the finally positive set 𝐹𝑝1  which are filtered out from 
𝑓𝑜1  are defined as: 

𝐹𝑝1 = {𝑓 𝑖
𝑜1
|(𝑝𝑖𝑜1 < 𝑝𝑖𝑜2 ) ∧ (𝑝𝑖𝑜2 > 𝜏)} (8)

Similarly, for the features of the second patch 𝑓𝑡2 , the positive set 𝐹𝑝2
are obtained in the same way. We minimize the 𝑐 on the feature from 
𝐹𝑝1  and 𝐹𝑝2 . The pixel-to-pixel contrastive loss 𝑝𝑖𝑥𝑒𝑙 is defined as: 

𝑝𝑖𝑥𝑒𝑙=−
1
𝑁1

∑

𝑓 𝑖
𝑜1
∈𝐹𝑝1

𝑐 (𝑓 𝑖
𝑜1
, 𝑓 𝑖

𝑜2
)− 1

𝑁2

∑

𝑓 𝑖
𝑜2
∈𝐹𝑝2

𝑐 (𝑓 𝑖
𝑜2
, 𝑓 𝑖

𝑜1
) (9)

where 𝑁1 and 𝑁2 denote the number of elements in the set 𝐹𝑝1  and 
𝐹𝑝2 , respectively.

In summary, the pixel-to-pixel contrastive loss (Eq. (9)) ensures 
that pixel-level features at the same position are aligned, while fea-
tures at different positions are separated. It progressively enhances 
the consistency of pixel-level features under different contexts during 
training. Consequently, pixel-to-pixel contrastive learning increases the 
segmentation model robustness against varying environments.

3.4. Prototype-to-prototype consistent alignment

The proposed pixel-to-pixel contrastive loss (Eq. (9)) focuses on 
the consistency between corresponding positive pixel pairs of 𝑓𝑜1  and 
𝑓𝑜2  in the overlapping region. We further consider cross-domain se-
mantic consistency for pixels of the same class but from different 
domains on the mixed image (e.g., 𝑓 𝑖

𝑜1
 and 𝑓 𝑗

𝑜2 ), as illustrated in Fig. 
3. To accomplish semantic consistency, we propose a prototype-to-
prototype contrastive loss that aligns the prototypes belonging to the 
same class. It utilizes the semantic concept as a guide to enforce feature 
representation alignment across domains.

Specifically, the overlapping feature 𝑓𝑜1  and 𝑓𝑜2  are used to con-
struct two class-dependent feature prototypes 𝑐

𝑜1
 and 𝑐

𝑜2
 as category 

centroids. A prototype for the class 𝑐 is assembled as an average of 
selected features whose confidence exceeds the threshold 𝜏: 

𝑐
𝑜1

=

∑𝑁
𝑖=1 𝑓

𝑖
𝑜1

⋅ 1[𝑝𝑖𝑐 > 𝜏]
∑𝑁 𝑖

(10)

𝑖=1 1[𝑝𝑐 > 𝜏]
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Algorithm 1 CoPDASeg Algorithm.
Input: Source-domain and target-domain images 𝑥𝑠 and 𝑥𝑡, student 

network 𝛩, teacher network 𝛩′, maximum/warm-up iteration 
𝐿∕𝐿𝑤 and hyperparameters 𝜆𝑐𝑜𝑛𝑠𝑖𝑠, 𝜆𝐹𝐷. 

1: Initialize 𝛩𝐸 with ImageNet pre-trained parameters and randomly 
initialize two heads 𝛩𝐶 and 𝛩𝑃 . 

2: Teacher network init: 𝛩′
𝐸 ← 𝛩𝐸 , 𝛩′

𝐶 ← 𝛩𝐶 . 
3: for 𝑖𝑡𝑒𝑟 ← 0 to 𝐿 do 
4: Randomly sample a source image 𝑥𝑠 with 𝑦𝑠 and a target image 

𝑥𝑡. 
5: 𝑥𝐴𝑡 , 𝑦̂𝐴𝑡 ←Apply augmentation with (𝑥𝑡, 𝑦̂𝑡), where 𝑦̂𝑡 is generated 

from 𝑦̂𝑡←𝛩′(𝑥𝑡). 
6: Compute predictions 𝑌𝑠←𝛩′(𝑥𝑠), 𝑌𝑚←𝛩′(𝑥𝑚). 
7: Train 𝛩, using Eq. (1), Eq. (2). 
8: if 𝑖𝑡𝑒𝑟>𝐿𝑤 then 
9: 𝑥𝑡1 , 𝑥𝑡2 , 𝑦̂𝑡1 , 𝑦̂𝑡2←Apply contextual augmentation with (𝑥𝑡, 𝑦̂𝑡)
10: Compute hidden-layer feature maps 𝑓𝑡1  and 𝑓𝑡2 . 
11: Train 𝛩, 𝛩𝑃  via Eq. (9), Eq. (13).
12: end if
13: Update 𝛩′ with 𝛩 via Eq. (3).
14: end for
15: return  Final segmentation network 𝛩.

where 𝑁 denotes the number of pixels from features 𝑓𝑜1 , 1[⋅] is an 
indicator function, which equals to 1 if the predicted probability 𝑝𝑖𝑐 is 
greater than 𝜏 and 0 otherwise. Similarly, 𝑐

𝑜2
 is constructed in the same 

way. We enforce the consistency between 𝑐
𝑜1
 and 𝑐

𝑜2
. In addition, to 

more accurately depict the category centroids, the global prototype 𝑡
is calculated from all the unlabeled images within the current training 
batch: 

𝑐
𝑡 =

∑𝑁
𝑖=1 𝑓

𝑖
𝑡 ⋅ 1[𝑝

𝑖
𝑐 > 𝜏]

∑𝑁
𝑖=1 1[𝑝𝑖𝑐 > 𝜏]

(11)

where 𝑓 𝑖
𝑡  includes the features 𝑓𝑡1  and 𝑓𝑡2 . The global prototype 𝑡 is 

used as negative pairs when we enforce the consistency between the 
local prototype of the same class. Specifically, for the prototype 𝑜1 , 
the same class prototype 𝑐

𝑜1
 and 𝑐

𝑜2
 are positive pairs and all the other 

class global prototypes 𝑘
𝑡  are the negative pairs: 

𝑐 (𝑐
𝑜1
,𝑐

𝑜2
) = 𝑙𝑜𝑔

𝛾2(𝑐
𝑜1
⋅𝑐

𝑜2
)

𝛾2(𝑐
𝑜1
⋅𝑐

𝑜2
) +

∑𝐶
𝑘≠𝑐 𝛾2(𝑐

𝑜1
⋅𝑘

𝑡 )
(12)

where 𝛾2 denotes the exponential function of the cosine similarity 
between two prototypes with a scaling factor 𝑠2. Therefore the final 
prototype-to-prototype contrastive loss 𝑝𝑟𝑜𝑡𝑜 is defined as: 

𝑝𝑟𝑜𝑡𝑜 = −
𝐶
∑

𝑐=1
(𝑐 (𝑐

𝑜1
,𝑐

𝑜2
) + 𝑐 (𝑐

𝑜2
,𝑐

𝑜1
)) (13)

The prototype of the augmented image serves as a bridge between 
the source and target domains, as it shares the same semantic informa-
tion from both. Specifically, by optimizing the prototype-to-prototype 
contrastive loss (Eq. (13)), we minimize the intra-category discrepancy 
and maximize the inter-category margin within the two domains. It 
facilitates the explicit transfer of knowledge between the source and 
target domains. The features of the same category in both domains 
are mixed during prototype-to-prototype contrastive learning, resulting 
in more accurate class-wise alignments across domains. This, in turn, 
enables the model to generalize better in both domains.

In conclusion, the procedure of our CoPDASeg is presented in 
Algorithm 1. A batch of images and labels, 𝑥𝑠, 𝑥𝐴𝑡  and 𝑦𝑠, 𝑦𝐴𝑡 , are used to 
train the student network 𝛩 by optimizing Eq.  (1), Eq. (2). To stabilize 
the training process, a warm-up iteration step 𝐿𝑤 is set. After 𝐿𝑤 steps, 
our proposed two contrastive losses Eqs. (9) and (13) are added into 
6

the training process to achieve CoPDASeg. Thus, our final loss function 
is defined as: 
𝑓𝑖𝑛𝑎𝑙 = 𝑠 + 𝑡 + 𝜆𝑐𝑜𝑛𝑠𝑖𝑠(𝑝𝑖𝑥𝑒𝑙 + 𝑝𝑟𝑜𝑡𝑜) + 𝜆𝐹𝐷𝐹𝐷 (14)

where 𝑠 denotes the cross-entropy loss on the labeled source domain, 
𝑡 represents self-training loss on the unlabeled target domain, 𝐹𝐷
is thing-class ImageNet feature distance of DAformer (Hoyer et al., 
2022a) to further improve results, 𝜆𝑐𝑜𝑛𝑠𝑖𝑠 and 𝜆𝐹𝐷 indicate the hyper-
parameters to balance different losses.

4. Experiments

4.1. Experimental setups

Datasets. We evaluate our method on two popular synthetic-to-
real benchmarks: GTA5 → Cityscapes and SYNTHIA → Cityscapes. 
GTA5 (Richter et al., 2016) is an image dataset synthesized by the 
physically-based rendered computer game ‘‘Grand Theft Auto V’’. It 
contains 24,966 city scene images with a resolution of 1914 × 1052 and 
is shared with the same 19 classes as Cityscapes. SYNTHIA (Ros et al., 
2016) is a synthetic urban scene dataset. Following (Tsai et al., 2018), 
we select its subset, called SYNTHIA-RAND-CITYSCAPES, which has 
16 common semantic annotations with Cityscapes. In total, the SYN-
THIA dataset contains 9400 images with a resolution of 1280 × 760. 
GTA5 and SYNTHIA are used as source domain data for training. 
Cityscapes (Cordts et al., 2016) is a dataset of real urban scenes taken 
from 50 cities in Germany and neighboring countries, which contains 
2975 training and 500 validation urban scene images with a resolution 
of 2048 × 1024. For the DASS task, we use its training set images as 
the unlabeled target domain and validation set images for evaluation.

Network Architectures. For the baseline, we select the recent 
state-of-the-art framework MIC (Hoyer et al., 2023) which is based 
on DAFormer (Hoyer et al., 2022a) and HRDA (Hoyer et al., 2022b), 
which are all based on Transformer architecture. To verify the gener-
alization ability of our method on CNN structures, following previous 
methods (Wang et al., 2023a,b), we also replace the transformer-based 
model structure with ResNet101 (He et al., 2016) + DeepLabV2 (Chen 
et al., 2017). In all architectures, Atrous Spatial Pyramid Pooling 
(ASPP) with dilated rates {6, 12, 18, 24} (Chen et al., 2017) is used as 
the segmentation head. An up-sampling layer is used to compute the 
final per-pixel predictions with the same image size as the input. The 
projection head (Wang et al., 2021c) is integrated into the network that 
maps high-dimensional pixel embedding into a 128-d 𝑙2-normalized 
feature vector. It consists of two 1 × 1 convolutional layers and one 
intermediate ReLU layer. For a fair comparison, all the backbones are 
pre-trained on ImageNet (Deng et al., 2009), with the remaining layers 
being initialized randomly.

Implementation Details. We implement CoPDASeg based on the 
mmsegmentation toolbox with PyTorch on 4 T V100 GPUs. We apply 
AdamW (Loshchilov and Hutter, 2019) optimizer with the initial learn-
ing rate of 𝜂𝑏𝑎𝑠𝑒 = 6×10−5 for the encoder and 6×10−4 for the decoder, 
a weight decay of 0.01, betas (0.9,0.999), linear learning rate warm 
up with 𝑡𝑤𝑎𝑟𝑚 = 1500 and linear decay afterward. The input image is 
resized to 1280 × 720 for GTA and 1280 × 760 for SYNTHIA. For the 
target domain Cityscapes, the image size is resized to 1280 × 640. We 
train the network with a batch of four 640 × 640 random crops for a 
total of 60000 iterations. To stabilize training, our method starts from 
5000 iterations, i.e., 𝐿𝑤=5000. Following previous works (Hoyer et al., 
2022a,b), for the hyper-parameters in our method, we set 𝜆𝑐𝑜𝑛𝑠𝑖𝑠=0.01, 
𝜆𝐹𝐷=0.005, momentum 𝛽=0.999 and 𝜏=0.95 in all our experiments. In 
contextual augmentation, the Intersection-over-Union (IoU) range of 
these two patches is supposed to be within the range [0.1,1.0].

Testing. At the test stage, we only resize the validation images to 
the same resolution of 1280 × 640 as the input image. Note that there 
is no extra inference step inserted into the basic segmentation model, 
that is, the teacher network and projection head are directly discarded.
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Table 1
GTA5 (Richter et al., 2016) → Cityscapes (Cordts et al., 2016) adaptation results. We compare our method with state-of-the-art competitors. † denotes using 
the distillation technique. In all tables, the best result is highlighted in red. The second-best results are highlighted in blue. This table contains three sets of 
experiments based on DeepLabV2 (Chen et al., 2017), DAFormer (Hoyer et al., 2022a), and HRDA (Hoyer et al., 2022b), respectively. The following tables are 
also the same (Li et al., 2022b).
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DeepLabV2

Source Only 70.2 14.6 71.3 24.1 15.3 25.5 32.1 13.5 82.9 25.1 78.0 56.2 33.3 76.3 26.6 29.8 12.3 28.5 18.0 38.6
AdaptSeg Tsai et al. (2018) 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
ADVENT Vu et al. (2019) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

DACS Tranheden et al. (2021) 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
EFA Chen et al. (2021) 91.3 54.5 84.9 31.0 25.7 36.3 42.0 33.2 85.0 39.1 86.9 61.2 30.7 83.9 32.6 41.6 5.4 31.1 30.7 48.8

ProDA† Zhang et al. (2021) 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
LISR (Li et al., 2022b) 93.7 53.6 83. 5 35.1 21.1 28.6 36.2 42.0 82.2 32.4 86.5 47.3 19.4 83.8 26.0 30.7 30.2 13.1 32.1 46.2
CPSL† Li et al. (2022a) 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.5 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
BLV Wang et al. (2023a) 94.9 68.2 88.8 40.9 37.1 42.6 52.1 62.1 88.3 43.3 89.3 68.6 44.5 88.9 56.0 54.6 3.8 38.6 58.3 59.0
MIC Hoyer et al. (2023) 96.5 74.3 90.4 47.1 42.8 50.3 61.7 62.3 90.3 49.2 90.7 77.8 53.2 93.0 66.2 68.0 6.8 38.0 60.6 64.2
RTea (Zhao et al., 2023) 95.4 67.1 87.9 46.1 44.0 46.0 53.8 59.5 89.7 49.8 89.8 71.5 40.5 90.8 55.0 57.9 22.1 47.7 62.5 61.9

CoPDASeg (Ours) 95.7 71.1 90.9 52.8 50.5 53.3 66.0 65.2 90.5 52.8 89.1 80.0 57.4 90.2 44.7 72.8 44.1 60.0 65.5 68.1

DAFormer

DAFormer Hoyer et al. (2022a) 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
BLV Wang et al. (2023a) 96.2 73.1 89.3 53.6 55.7 50.9 55.7 61.1 89.7 52.4 92.3 74.7 43.5 91.6 74.6 77.4 69.2 58.9 62.3 69.6
MIC Hoyer et al. (2023) 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6 70.6
PiPa (Chen et al., 2023) 96.1 72.0 90.3 56.6 52.0 55.1 61.8 63.7 90.8 52.6 93.6 74.3 43.6 93.5 78.4 84.2 77.3 59.9 66.7 71.7

CDAC (Wang et al., 2023b) 96.5 73.9 89.5 56.8 48.9 50.7 55.8 63.3 89.9 49.1 91.2 72.2 45.4 92.7 78.3 82.9 67.5 55.2 63.4 69.6
RTea (Zhao et al., 2023) 96.1 71.7 89.1 57.8 50.4 55.9 59.3 66.7 90.4 48.2 94.5 74.8 46.5 93.8 78.7 81.6 65.8 57.1 62.8 70.6

MICDrop (Yang et al., 2024) 96.5 74.2 90.8 60.5 52.0 55.8 59.9 65.6 90.3 51.8 93.0 73.1 46.9 93.4 82.0 85.8 74.3 56.6 62.8 71.8
CoPDASeg (Ours) 96.5 74.7 90.6 56.4 52.3 55.9 61.0 68.8 91.0 49.6 91.7 75.5 51.2 92.7 74.9 86.9 78.2 59.7 66.0 72.3

HRDA

HRDA Hoyer et al. (2022b) 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
BLV Wang et al. (2023a) 96.7 76.6 91.5 61.2 56.9 59.4 62.2 72.8 91.5 51.2 94.3 77.5 54.7 93.5 83.2 84.7 79.7 68.1 67.6 74.9
MIC Hoyer et al. (2023) 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9
PiPa (Chen et al., 2023) 96.8 76.3 91.6 63.0 57.7 60.0 65.4 72.6 91.7 51.8 94.8 79.7 56.4 94.4 85.9 88.4 78.9 63.5 67.2 75.6

CDAC (Wang et al., 2023b) 97.1 78.7 91.8 59.6 57.1 59.1 66.1 72.2 91.8 53.1 94.5 79.4 51.6 94.6 84.9 87.8 78.7 64.9 67.6 75.3
RTea (Zhao et al., 2023) 97.1 75.2 92.6 63.5 51.8 58.2 66.5 71.2 91.1 49.0 96.8 81.5 54.2 94.2 84.8 86.6 75.7 62.2 66.7 74.7

MICDrop (Yang et al., 2024) 97.6 81.5 92.0 62.8 59.4 62.6 62.9 73.6 91.6 52.6 94.1 80.2 57.0 94.8 87.4 90.7 81.6 65.3 67.8 76.6
CoPDASeg (Ours) 97.9 82.4 91.6 65.0 60.8 61.1 66.7 67.1 91.8 53.3 94.1 81.7 59.3 95.3 88.1 91.7 83.5 63.1 69.1 77.1
Table 2
SYNTHIA (Ros et al., 2016) → Cityscapes (Cordts et al., 2016) adaptation results. The mIoU and the mIoU* indicate mean IoU over 16 and 13 categories, 
respectively. Category with ∗ stands for three categories not calculated in mIoU*.
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mIoU mIoU*

DeepLabV2

Source Only 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6
AdaptSeg (Tsai et al., 2018) 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9
ADVENT (Vu et al., 2019) 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

DACS (Tranheden et al., 2021) 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
EFA (Chen et al., 2021) 74.4 28.8 81.5 13.5 1.2 32.6 21.6 32.4 81.5 83.7 52.8 25.8 78.0 30.0 29.6 52.7 45.0 51.8

ProDA† (Zhang et al., 2021) 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
LISR (Li et al., 2022b) 84.6 40.3 74.5 0.5 0.1 27.7 25.4 25.1 78.0 81.8 58.0 19.4 70.5 24.3 17.7 41.5 41.8 49.3
CPSL† (Li et al., 2022a) 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 88.5 79.0 32.0 90.6 49.4 50.8 59.8 57.9 65.3
BLV (Wang et al., 2023a) 70.4 28.9 89.2 25.2 19.9 40.2 55.2 50.3 86.9 84.2 76.4 40.5 79.6 51.3 49.2 61.2 56.8 63.3
MIC (Hoyer et al., 2023) 84.7 45.7 88.3 29.9 2.8 53.3 61.0 59.5 86.9 88.8 78.2 53.3 89.4 58.8 56.0 68.3 62.8 70.7
RTea (Zhao et al., 2023) 93.2 59.6 86.3 31.3 4.8 43.1 41.8 44.0 88.6 90.5 70.4 42.6 89.5 56.7 40.2 59.9 58.9 66.4

CoPDASeg (Ours) 78.6 36.5 88.6 28.3 8.6 48.9 63.9 57.3 88.1 88.8 79.9 59.9 92.9 82.3 61.4 66.0 64.4 72.6

DAFormer

DAFormer (Hoyer et al., 2022a) 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4
BLV (Wang et al., 2023a) 86.7 44.9 89.0 43.2 6.4 52.1 60.0 54.9 88.2 91.3 74.9 46.1 88.6 55.6 55.0 62.3 62.5 69.0
MIC (Hoyer et al., 2023) 83.0 40.9 88.2 37.6 9.0 52.4 56.0 56.5 87.6 93.4 74.2 51.4 87.1 59.6 57.9 61.2 62.2 69.0
PiPa (Chen et al., 2023) 87.9 48.9 88.7 45.1 4.5 53.1 59.1 58.8 87.8 92.2 75.7 49.6 88.8 53.5 58.0 62.8 63.4 70.1

CDAC (Wang et al., 2023b) 83.7 42.9 87.4 39.8 7.5 50.7 55.7 53.5 85.9 90.9 74.5 47.2 86.0 60.2 57.8 60.8 61.5 68.2
RTea (Zhao et al., 2023) 85.9 43.2 90.1 45.1 6.3 52.4 60.5 57.1 87.8 92.2 75.3 51.8 87.4 55.9 54.1 62.6 63.0 69.5

MICDrop (Yang et al., 2024) 81.0 37.1 89.4 45.7 99.5 51.8 57.3 58.0 86.7 85.0 73.6 50.4 88.2 64.7 56.8 62.8 62.4 -
CoPDASeg (Ours) 86.5 45.6 87.8 45.1 2.5 54.5 61.6 58.9 88.9 88.8 76.9 48.4 92.2 83.5 61.8 61.8 65.3 72.5

HRDA

HRDA (Hoyer et al., 2022b) 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 65.8 72.4
BLV (Wang et al., 2023a) 87.6 47.9 90.5 50.4 6.9 57.1 64.3 65.3 86.9 93.4 78.9 54.9 89.1 62.9 65.2 66.8 66.8 73.4
MIC (Hoyer et al., 2023) 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 67.3 74.0
PiPa (Chen et al., 2023) 88.6 50.1 90.0 53.8 7.7 58.1 67.2 63.1 88.5 94.5 79.7 57.6 90.8 70.2 65.1 66.9 68.2 74.8

CDAC (Wang et al., 2023b) 93.1 68.5 89.8 51.2 8.9 59.4 65.5 65.3 84.7 94.4 81.2 57.0 90.5 56.9 66.8 66.4 68.7 75.4
RTea (Zhao et al., 2023) 87.8 49.0 90.3 50.3 5.5 58.6 66.0 61.4 86.8 93.1 79.5 53.1 89.5 65.1 63.7 64.6 66.5 73.0

MICDrop (Yang et al., 2024) 82.8 42.6 90.5 51.6 9.6 61.0 65.7 65.0 89.1 95.0 81.1 59.7 90.6 68.3 67.4 66.5 67.9 -
CoPDASeg (Ours) 90.5 55.8 89.9 44.5 7.4 64.5 70.2 65.2 91.6 94.8 80.9 59.3 94.8 84.6 67.2 65.9 70.5 77.4
 
 
 
 
 
 
 

 
 

 

 

 
 

 

 
 

 

 

 
 

Evaluation. The IoU is adopted as our evaluation metric which
is broadly applied in many semantic segmentation tasks. We report
the result of per-class IoU and mean IoU for all the classes. Following
previous works (Jiang et al., 2022; Zhang et al., 2021), we evaluate our
method on 19 common categories for GTA5 → Cityscapes and both 16
and 13 common categories for SYNTHIA → Cityscapes, respectively.
The best and second-best results are highlighted in red and blue,
respectively.

4.2. Comparisons with the state-of-the-arts

In order to evaluate the efficiency, we compare our CoPDASeg
with two typical DASS method categories that are all based on the
ResNet (He et al., 2016) backbone:

• Adversarial training methods, such as AdaptSeg (Tsai et al.,
2018), ADVENT (Vu et al., 2019) and EFA (Chen et al., 2021).

• Self-training methods, such as PLCA (Kang et al., 2020),
DACS (Tranheden et al., 2021), ProDA (Zhang et al., 2021) and
CPSL (Li et al., 2022a).
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Furthermore, we also compare our method with the Transformer-
based methods, such as DAformer (Hoyer et al., 2022a), HRDA (Hoyer
et al., 2022b), BLV (Wang et al., 2023a), MIC (Hoyer et al., 2023),
CDAC (Wang et al., 2023b), RTea (Zhao et al., 2023) and
MICDrop (Yang et al., 2024). We evaluate our proposed PatchMix
method against several competitive UDA methods on the GTA5 →
Cityscapes and SYNTHIA → Cityscapes benchmarks, and report results.

Results on GTA5 → Cityscpaes. We compare the proposed CoP-
DASeg with previous DASS methods (Chen et al., 2021; Zhang et al.,
2021; Wang et al., 2023a; Hoyer et al., 2023) in Table  1. We have the
following observations:

• CoPDASeg based on DeepLabV2 achieves 68.1% mIoU, outper-
forming the baseline model trained merely on source data by a
large margin of 29.5% mIoU. Compared with the previous adver-
sarial training method EFA (Chen et al., 2021), CoPDASeg im-
proves the mIoU by 19.3%. CoPDASeg surpasses the second-best
method MIC (Hoyer et al., 2023) by 3.9% mIoU.

• CoPDASeg obtains significant improvements in many hard classes.
For example, CoPDASeg achieves 44.1% mIoU in the ‘‘train’’
class. Many previous methods (Zhang et al., 2021; Wang et al.,
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Fig. 4. Qualitative segmentation results for GTA5 (Richter et al., 2016) → Cityscapes (Cordts et al., 2016). From left to right: target image, the segmentation 
results predicted by DAFormer (Hoyer et al., 2022a), CoPDASeg (DAFormer), HRDA (Hoyer et al., 2022b), CoPDASeg (HRDA), and Ground Truth. We deploy the 
gold dash boxes to highlight different prediction parts.
2023a; Hoyer et al., 2023) fail to predict the ‘‘train’’ class well 
because this class is rarely presented in an image and has a 
significantly different appearance across domains. It demonstrates 
that CoPDASeg indeed helps the model to produce more robust 
features against varying environments and effectively deals with 
the domain gap, especially the hard classes, such as ‘‘train’’, 
‘‘motorcycle’’ and ‘‘bike’’.

We further apply CoPDASeg to the Transformer-based architectures 
(DAFormer Hoyer et al., 2022a and HRDA Hoyer et al., 2022b) and 
compare with the other Transformer-based DASS methods, such as 
BLV (Wang et al., 2023a), MIC (Hoyer et al., 2023) and CDAC (Wang 
et al., 2023b) to demonstrate the effectiveness of CoPDASeg. Table  1 
gives the comparison results on the task of GTA5 → Cityscpaes. We 
observe:

• Based on DAFormer (Hoyer et al., 2022a) and HRDA (Hoyer et al., 
2022b), CoPDASeg surpasses MICDrop. Specifically, the mIoU 
score is increased by 2.3% and 0.5% respectively for HARD and 
MICHARD with the baseline of MICDrop. Similar experimental 
results can be observed from the comparison between CoPDASeg 
and MICDrop based on the DAFormer.

• Among all the 19 categories, CoPDASeg achieves the best or 
second-best performance in most of them and performs especially 
well in the hardest categories, such as ‘‘pole’’, ‘‘train’’, ‘‘bike’’ and 
so on.

It indicates that CoPDASeg is still competitive on the new Transformer-
based architecture.

Results on SYNTHIA → Cityscpaes. Similar to previous meth-
ods (Tsai et al., 2018), we also report the DASS performance of the 16 
and 13 common categories on the task of SYNTHIA → Cityscpaes in Ta-
ble  2, with comparisons to the state-of-the-art DASS approaches (Chen 
et al., 2021; Hoyer et al., 2023). It can be seen that:

• Among all the 16 categories, CoPDASeg achieves the best scores 
in 6 categories, most of which are hard classes, e.g., ‘‘light’’ and 
‘‘motorcycle’’.
8

• CoPDASeg achieves the mIoU score by 64.4% and 72.6% over 
the 16 and 13 categories respectively, which outperforms the 
EFA (Chen et al., 2021) by 19.4% mIoU and 20.8% mIoU* over 
the 16 and 13 categories, respectively. CoPDASeg achieves a 
70.5% mIoU score for the HRAD-based method, exceeding those 
of MICDrop. As for the DAFormer-based method, the mIoU score 
is increased by 2.9% compared to MICDrop.

• CoPDASeg obtains improvement over the second best method 
MIC (Hoyer et al., 2023) by 1.6% mIoU and 1.9% mIoU*.

Similarly, the comparison results of SYNTHIA → Cityscapes with 
the Transformer-based architectures (DAFormer Hoyer et al., 2022a, 
HRDA Hoyer et al., 2022b) are shown in Table  2. We have the following 
observations:

• CoPDASeg based on DAFormer (Hoyer et al., 2022a) achieves 
65.3% and 72.5% mIoU scores over the 16 and 13 categories 
respectively and outperforms the second-best method RTea (Zhao 
et al., 2023) by a large margin of 2.3% and 3.0%.

• Based on HRDA (Hoyer et al., 2022b), CoPDASeg achieve mIoU 
of 70.5% and 77.4% for the two evaluation metrics, respectively. 
It surpasses the second-best method CDAC (Wang et al., 2023b) 
by 1.8% mIoU and 2.0% mIoU* over the 16 and 13 categories.

• Among all the 16 categories, CoPDASeg shows superior results in 
many important classes (e.g., ‘‘traffic light’’, ‘‘bus’’, ‘‘motorcycle’’,
etc).

These results reveal that CoPDASeg remains competitive on the task of 
SYNTHIA → Cityscapes.

Qualitative Results. In Fig.  4, we visualize the segmentation re-
sults of CoPDASeg based on DAFormer (Hoyer et al., 2022a) and 
HRDA (Hoyer et al., 2022b) on GTA5 → Cityscapes. It indicates that 
the results of CoPDASeg are smoother and more accurate than the 
baseline model, especially for the hard classes. For example, from the 
third row, it can be seen that CoPDASeg predicts smoother edges of 
both traffic signs and poles. In addition, it successfully segmented the 
bus behind the car. These results state the superiority of the proposed 
CoPDASeg over the baseline model. We think it is because CoPDASeg 
explicitly encourages pixel-level consistency against different contexts, 
which effectively enhances the robustness of edge predictions.
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Fig. 5. Visual comparison results between contextual augmentation and low-
level augmentation using t-SNE visualization for features of the overlapping 
region (shown in the red box). Left: input crops from the same image, 
where the first row and the third row apply the low-level and contextual 
augmentation respectively. Middle: t-SNE results of the model trained with 
labeled data only. Note that the three visualizations are in the same t-SNE 
space, and the dots with the same color represent the features of the same 
class. Right: t-SNE results of our method. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.)

t-SNE Visualization. To better demonstrate our intuition, we draw 
the t-SNE visualizations of learned representations for low-level aug-
mentation and our proposed contextual augmentation in Fig.  5. As 
shown in the second column of Fig.  5, it can be observed that the 
embedding distribution changes much more significantly under contex-
tual augmentation (i.e., second and third row of the second column) 
than low-level augmentations (i.e., first and second row of the second 
column). It proves that our contextual augmentation provides stronger 
and more effective perturbations to promote the robustness of the 
model. Besides, after our proposed contrastive learning, the results 
(i.e., second and third row of the third column) show that our method 
successfully aligns the features for the overlapping region and separates 
them for different categories. That is, it minimizes intra-class variations 
and maximizes inter-class variations, regardless of domains.

4.3. Ablation studies

We conduct ablation experiments to analyze the effectiveness of 
our proposed method. All experiments are conducted on GTA5 →
Cityscapes.

Effectiveness of Each Component. In this section, we validate 
the contribution of each component in CoPDASeg using GTA5 →
Cityscapes. For the convenience of expression, we abbreviate ‘‘pixel-
to-pixel contrastive loss’’, ‘‘prototype-to-prototype contrastive loss’’ and 
‘‘Non-linear Projection Head’’ with ‘‘𝑝𝑖𝑥𝑒𝑙 ’’, ‘‘𝑝𝑟𝑜𝑡𝑜’’ and ‘‘𝑃𝑟𝑜𝑗’’.

Table  3 shows the corresponding results by switching on each 
component over the baseline. CoPDASeg achieves 66.3% and 66.6% 
mIoU scores respectively after only using the proposed 𝑝𝑖𝑥𝑒𝑙 or 𝑝𝑟𝑜𝑡𝑜
to achieve consistent alignment. It can be seen that either using 𝑝𝑖𝑥𝑒𝑙
or 𝑝𝑟𝑜𝑡𝑜 to implement CoPDASeg can obtain extra gains of 2.1% mIoU 
and 2.4% mIoU, respectively. This demonstrates that both 𝑝𝑖𝑥𝑒𝑙 and 
𝑝𝑟𝑜𝑡𝑜 play key roles in improving the segmentation performance by 
accomplishing CoPDASeg at the pixel level and class level. As shown in 
the last two rows of Table  3, the mIoU of the adapted model decreases 
moderately without the non-linear projection head. It supports the 
importance of the projection head. By combining the proposed two 
contrastive loss functions with the projection head, we further obtain 
9

Table 3
Ablation studies of each loss function for GTA5 → Cityscapes.
 Method 𝑝𝑖𝑥𝑒𝑙 𝑝𝑟𝑜𝑡𝑜 𝑃𝑟𝑜𝑗 mIoU 
 

CoPDASeg

64.2  
 ✓ ✓ 66.3  
 ✓ ✓ 66.6  
 ✓ ✓ 67.2  
 ✓ ✓ ✓ 68.1  

Table 4
Ablation studies on the key components of our proposed contextual augmen-
tation.
 Method Source Target Class Mix Low-level Aug mIoU 
 Contextual
Augmentation

✓ ✓ 65.7  

 ✓ ✓ 61.6  
 ✓ 67.6  
 ✓ ✓ 68.1  

Table 5
Ablation studies of calculating prototype on different regions.
 Calculate
prototype

Whole 
patch

Overlap
region

 

 mIoU 67.4 68.1  

an improvement of 3.9% mIoU score over the baseline. The results 
show that each of the proposed components plays an important role 
in consistent alignment and effectively mitigates the domain gap.

Ablation Studies in Contextual Augmentation Module. Table  4 
lists the results of using each individual component in the contextual 
augmentation module. We use the source domain images or target 
domain images to replace the mixed images in the contextual augmen-
tation. It leads to an obvious mIoU drop of 2.4% and 6.5% respectively. 
It demonstrates that achieving contextual augmentation on one domain 
influences subsequent cross-domain alignment processes. It can be seen 
that the latter brings a more serious decline in performance. Due to the 
lack of the target domain annotation, a large amount of noise on the 
pseudo label leads to insufficient learning during consistent alignment. 
In addition, image augmentation is used to further strengthen the 
difference of features between two patches and brings a performance 
gain of more than 0.5% mIoU. It supports our claim that a stronger 
perturbation plays a key role in consistency regularization.

Semantic Alignment with Different Strategies. In this section, 
we compare two prototype computation strategies in prototype-to-
prototype contrastive learning: computing prototype from (1) the whole
patch or (2) the overlapping region, respectively. The comparison 
results are shown in Table  5. We can observe that the first strategy 
is 0.7% lower than the second one, verifying the importance of loca-
tion information for semantic consistent alignment. This observation 
indicates that the first strategy introduces more noise from the non-
overlapping region of pseudo labels during consistency regularization, 
which harms the performance of our method.

5. Conclusion

In this paper, we aim to design stronger and more effective pertur-
bations for cross-domain consistency learning. Thus, we propose a new 
augmentation method, i.e., contextual augmentation, and combine it 
with contrastive learning from both pixel and class levels. Specifically, 
contextual augmentation first mixes two domain information by class 
mix and then randomly crops two patches with an overlapping region 
from the mixed image. Then, pixel-to-pixel and prototype-to-prototype 
contrastive learning are introduced to realize the consistency alignment 
at both the pixel and class levels. The effectiveness of our method 
is demonstrated on GTA5 → Cityscapes and SYNTHIA → Cityscapes 
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benchmarks. It can be observed that our method brings large improve-
ment for hard classes, e.g., ‘‘traffic light’’, ‘‘bus’’, ‘‘bike’’, etc. Besides, 
the architecture of our model is neat as it only adopts one single-stage 
pipeline without any extra special training techniques.
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