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Abstract—Recently, learned image compression algorithms
have achieved significant performance. The entropy model is
crucial for improving the rate-distortion performance by esti-
mating the probability distribution of latent representation. In
this paper, we propose an adaptive fusion entropy model for
learned image compression (ALIC). To explore the correlation
between channel and global spatial features, an adaptive fusion
entropy model (AFEM) is designed. AFEM first slices the latent
representation along the channels and leverages the adaptive
channel fusion context module (ACFC) to capture correlations
between the decoded and current slices. Subsequently, AFEM
uses the adaptive spatial fusion context module (ASFC) to
further divide the current slice into encoding pixels and reference
pixels, thus improving the accuracy of probability estimation.
The attention map and modulation parameter are introduced in
ACFC and ASFC to interact with channel and spatial features. In
addition, the variable-rate residual transformer (VResFormer) is
proposed to control dynamic bit-rate by selectively modulating
the high-frequency component according to coefficient weight and
bias. Experimental results indicate that our ALIC outperforms
other learned image compression algorithms. Our ALIC saves
5.89% bit-rate compared with VVC (4:4:4) on Kodak dataset.

Index Terms—Learned image compression, Entropy model,
Variable-rate

I. INTRODUCTION

Early compression standards, such as JPEG [1], JPEG2000
[2] and BPG [3] use linear transformations to reduce the re-
dundant information. Recently, the learned image compression
algorithms have achieved remarkable progress [4]–[6] even
surpassing VVC (4:4:4) [7]. Most learned image compression
models are based on variational autoencoders (VAEs) [8] and
follow the paradigm consisting of transformation, quantization,
entropy coding, and inverse transformation.

The current entropy models aim to reduce the redundancy
of information by precisely estimating the probability distribu-
tion. For example, a conditional Gaussian mixture model [9]
was devised to optimize the autoregressive model based on
the hyperprior model [10]. Subsequently, a Gaussian mixture
model (GMM) [11] was proposed to estimate the distribution
of complex data by mixing multiple Gaussian distributions.
A Gaussian-Laplacian-Logistic mixture model (GLLMM) [6],
which combined multiple distributions, could estimate the
probability distribution more accurately and further reduce
redundancy. However, the autoregressive model significantly
improves the performance but is plagued by high complexity

because of the strict sequential decoding process. To address
this issue, Minnen et al. [12] proposed a channel-wise autore-
gressive entropy model to accelerate serial processing and He
et al. [13] introduced a parallel decoding checkerboard context
model from a spatial perspective. Recent algorithms utilized
attention mechanisms to enhance correlation modeling and
reduce redundancy in latent representations. CBAM [14] and
DAT [15] refined the characteristics by applying attention op-
erations along the channel and spatial dimensions. IBVC [16]
proposed a conditional spatio-temporal contextual decoder that
reduced redundant information through the channel attention
mechanism. ELIC [17] proposed a space-channel ConTeXt
model, which divided the channel context into uneven slices
to achieve an effective reduction in bit-rate. However, these al-
gorithms ignored the relationship between channel dimension
and global spatial dimension and limited the performance of
image compression.

Hence, we propose an Adaptive Fusion Entropy Model
(AFEM) combining the channel context and global spatial
context to further eliminate redundancy. Specifically, AFEM
mainly consists of two key components: the Adaptive Channel
Fusion Context Module (ACFC) and the Adaptive Spatial Fu-
sion Context Module (ASFC). To separately process inter-slice
information, ACFC integrates depthwise convolution (DW-
Conv) with channel attention mechanisms. By referring to the
previous slices, the probability distribution of the current slice
can be accurately estimated. To handle intra-slice information,
ASFC leverages the Swin-Transformer to model long-term de-
pendencies. A modulation mechanism is introduced in ACFC
and ASFC to enable the interaction between DW-Conv and at-
tention operations, fully exploiting the complementary context.
Moreover, a variable-rate residual transformer (VResFormer)
is proposed in the encoder-decoder network. Specifically, it
contains a transformer branch and a variable-rate branch. The
latter adjusts the high-frequency components of the former
according to the controllable parameter λ, adaptively adjusting
the content for compression and achieving variable-rate. We
evaluate our ALIC on Kodak and CLIC datasets in terms of
MSE and MS-SSIM. The experimental results show that our
ALIC outperforms the traditional codecs and other learned
compression algorithms. Specifically, by calculating the BD-
Rate of MSE result on Kodak dataset, our ALIC saves 5.89%
bit-rate compared with VVC (4:4:4).
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Fig. 1: The overview framework of our proposed ALIC. AFEM represents the proposed adaptive fusion entropy model and
VResFormer represents the proposed variable-rate residual transformer. The controllable parameter λ controls the adjustment
of high-frequency details to enable variable-rate compression. x is the input image and x̂ is the reconstructed image.

II. METHOD

A. Overall Architecture

The overview of the proposed learned image compression
framework is depicted in Fig. 1. The input image x first
passes through the downsampling layer and the proposed
variable-rate residual transformer (VResFormer) to generate
the latent representation y. Then, the proposed adaptive fusion
entropy model (AFEM) accurately estimates the probability
distribution. Finally, the decoded latent representation ŷ is used
to gradually reconstruct the image x̂.

B. Adaptive Fusion Entropy Model

To better utilize channel and spatial information in prob-
ability estimation, we propose an Adaptive Fusion Entropy
Model (AFEM) shown in Fig. 2. The latent representation ŷ
is divided into several slices along channel dimensions [12].
There is a high correlation between adjacent slices, which
allows the model to reconstruct the current slice more precisely
by using the previous decoded information. For the i-th slice
ŷi, the checkerboard mask is further applied to divide it into
anchor part ŷai and non-anchor part ŷnai . Non-anchor ŷnai

is decoded with reference to the contents of anchor ŷai . To
explore correlations between and within slices, we design the
Adaptive Channel Fusion Context Module (ACFC) and the
Adaptive Spatial Fusion Context Module (ASFC), which will
be elaborated on in detail below.
1) Adaptive Channel Fusion Context Module: To improve
the accuracy of probability estimation, the Adaptive Channel
Fusion Context Module (ACFC) is devised to utilize the
correlation between slices. As shown in Fig. 3 (left), ACFC
adopts a two-branch structure. In DW-Conv branch, the in-
put feature f passes through DW-Conv to efficiently extract
context information fd ∈ RH×W×C , which is defined as:

fd = DConv(f) (1)

Hyper -
Prior

ACFC

ASFC

Hyper -
Prior

ACFC

𝑦<𝑖

𝑦<𝑖

𝑦𝑖

𝑧
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Fig. 2: The structure of the adaptive fusion entropy model.

where DConv(·) represents DW-Conv. The attention branch
first performs pooling operations to calculate channel attention
map mc ∈ R1×1×C . The above operation is formulated as:

mc = σ(MLP (Pavg(f)) +MLP (Pmax(f))) (2)

where Pavg and Pmax are respectively the average pooling
and the max pooling, MLP (·) is the multi-layer network and
σ(·) denotes the sigmoid function. Then, the input feature f
is multiplied by mc to adjust the weight of each channel
and generate the output feature fc ∈ RH×W×C , which is
formulated as:

fc = f ×mc (3)

To realize the adaptive feature fusion, we propose a modu-
lation method for the interaction between the attention branch
and the DW-Conv branch. The modulation parameter f ′

d is
obtained via the convolution operation, which is defined as:

f
′

d = σ(Conv(fd)) (4)

where Conv(·) represents the convolution operation. Subse-
quently, the modulation parameter f ′

d and the channel attention
map mc are used as the adaptive weights of feature fusion to
obtain the output feature fch of ACFC, which is defined as:

fch = Conv((fd ×mc)⊕ (fc × f
′

d)) (5)

where ⊕ represents element-wise addition.
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Fig. 3: The structure of adaptive channel fusion context mod-
ule (left) and adaptive spatial fusion context module (right).

2) Adaptive Spatial Fusion Context Module: To make better
use of the global spatial information in each slice, an Adaptive
Spatial Fusion Context Module (ASFC) is designed as shown
in Fig. 3 (right). In the attention branch, the feature f is
processed by Swin-Transformer and sigmoid function σ to
obtain the spatial attention map ms, which is formulated as:

ms = σ(Swin(f)) (6)

where Swin(·) denotes Swin-Transformer. The attention map
ms re-weights feature f in the spatial dimension to obtain the
output feature fs, which is formulated as:

fs = f ⊙ms (7)

where ⊙ represents element-wise multiplication. Similar to
ACFC, the local feature fd ∈ RH×W×C can be obtained
via the DW-Conv branch. After that, the proposed modulation
method is also utilized to achieve adaptive feature fusion be-
tween the attention branch and the DW-Conv branch. Finally,
the modulation parameter f ′

d and the spatial attention map
ms are employed as the adaptive weights of feature fusion to
obtain the output feature fsp of ASFC, which is defined as:

fsp = Conv((fd ×ms)⊕ (fs × f
′

d)) (8)

C. Variable-Rate Residual Transformer

In each stage of encoder-decoder networks, the Variable-
Rate Residual Transformer (VResFormer) is designed to as-
semble global and local information [18] and achieve the
variable-rate [19], as illustrated in Fig. 4. The transformer
branch performs SW-MSA to focus on the long-term depen-
dencies between features. The variable-rate branch adaptively
ignores high-frequency components according to the demands
of bit-rates. It utilizes AdaLN [4] to generate coefficients w, b
for modulating high-frequency features.

w, b = split(Linear(GELU(eλ))) (9)

where GELU(·) and Linear(·) denote the GELU operation
and linear operation respectively. eλ is respectively split into
weight w and bias b. Next, the input feature fbn of the AdaLN
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Fig. 4: The structure of variable-rate residual transformer.

block is modulated by the obtained coefficients. The output
feature fad of the AdaLN block is calculated as:

fad = w × LN(fbn) + b (10)

where LN(·) represents the layer normalization.

D. Loss Function

Our learned image compression method aims to minimize
the rate-distortion loss. The trade-off between rate and dis-
tortion is determined by the Lagrange multiplier λ. The loss
function of our framework is defined as follows:

L = R(ŷ) + λD(x, x̂) (11)

where R(·) is utilized to calculate bit-rate for representation
compression, D(·) measures the distortion between the origi-
nal image x and the reconstructed image x̂.

III. EXPERIMENTS

A. Experimental Settings

We use COCO 2017 [20] as the training dataset, which
contains 118,287 images with dimensions of 640 × 420. We
evaluate our model on Kodak [21] and CLIC [22] datasets.
The Kodak dataset comprises 24 images with the resolution
of 512× 768 or 768× 512. The CLIC dataset consists of 41
images with the resolution of 2048× 1370.

During the training process, the images are cropped to
patches with the size of 256 × 256. The batch size is set to
16 to balance the memory and the training efficiency. We use
the Adam optimizer with a learning rate of 4×10−4 to ensure
stable convergence. All experiments are conducted on a RTX
3090 GPU for 200 epochs. We train our models using MSE
and MS-SSIM loss.

B. Comparisonal Results

We compare ALIC with several representative image com-
pression algorithms including traditional codecs [3], [7] and
learned-based algorithms [4], [6], [11], [23]–[28]. The results
of PSNR and SSIM (values are converted to decibels by
−10log10(1−MS-SSIM) for clarity) are shown in Fig. 5. To
intuitively evaluate the advancement of our ALIC, we further
compare the BD-Rate (The lower is the better) and BD-PSNR
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Fig. 5: The RD curves, using MSE and MS-SSIM as the distortion term of loss function, on Kodak and CLIC datasets.

TABLE I: BD-Rate and BD-PSNR on Kodak and CLIC.

Methods
Kodak CLIC

BD-PSNR BD-Rate BD-PSNR BD-Rate

GLLMM [6] -0.070dB 2.55% 0.092dB -1.56%

GMM [11] -0.350dB 8.13% -0.269dB 6.64%

Lee et al. [23] -0.864dB 21.59% -0.796dB 20.22%

CWCCM [24] 0.134dB -3.53% - -

SIGVIC [25] -0.091dB 2.23% -0.209dB 5.29%

MPEM [26] 0.131dB -1.88% - -

QARV [4] 0.085dB -1.74% 0.374dB -7.91%

Entroformer [27] -0.021dB -1.92% 0.134dB -2.71%

Qin et al. [28] -0.093dB 1.64% - -

ALIC (Ours) 0.334dB -5.89% 0.481dB -9.80%

(The higher is the better). The results are shown in TABLE I,
with VVC (4:4:4) as the anchor.

On Kodak dataset, our ALIC outperforms GLLMM by
0.404 dB in PSNR and reduces 8.44% bit-rate. ALIC out-
performs GMM by 0.684 dB in PSNR and reduces 14.02%
bit-rate. ALIC achieves 0.334 dB in PSNR and reduces 5.89%
bit-rate. On CLIC dataset, ALIC yields 0.481 dB in PSNR and
saves 9.80% bit-rate. Obviously, our ALIC can achieve the best
performance in PSNR.

C. Subjective Performance
The subjective performance of our ALIC is shown in Fig. 6.

Our ALIC recovers more intricate details in enlarged regions
such as the texture of the petals and the window blinds. It
indicates that our ALIC excels in visual quality.

D. Ablation Study
To compare the performance of different components, we

conduct the following ablation studies sequentially. The ex-
perimental results are shown in TABLE II.

The results show that adding ACFC and ASFC reduces the
BD-Rate by 1.565% and 1.253% respectively. Scheme C is
reduced by 2.688% in BD-Rate, showing that our modules can
effectively utilize channel and spatial information to accurately
estimate the probability distribution. Scheme D saves 3.904%
in BD-Rate, which proves that VResFormer can realize flexible
bit-rate control. Compared with the network without any pro-
posed components, BD-Rate shows progressive improvements.

JPEG
0.2205 / 24.31/0.8466

BPG
0.2037 / 29.40/0.9436

Ours[MSE]
0.1971 / 33.53/0.9796

Ground Truth
kodim07

GMM[MSE]
0.2305 / 33.52/0.9814

JPEG2000
0.2205 /29.34/0.9340

Fig. 6: Visual quality of reconstructed images.

TABLE II: Results of ablation study on Kodak dataset.

Schemes ACFC ASFC VResFormer BD-Rate

A ✓ -1.565%

B ✓ -1.253%

C ✓ ✓ -2.688%

D ✓ ✓ ✓ -3.904%

IV. CONCLUSION

In this paper, we propose an Adaptive Fusion Entropy
Model for learned image compression (ALIC). The Adaptive
Fusion Entropy Model (AFEM) is designed with the incor-
poration of the Adaptive Channel Fusion Context Module
(ACFC) and the Adaptive Spatial Fusion Context Module
(ASFC) to capture the correlations between slices and within
slices separately. In addition, the Variable-Rate Residual
Transformer (VResFormer) is designed to adapt and ignore
the high-frequency component to meet the need for flexible
rate control. Experimental results show that our ALIC outper-
forms other compared algorithms, achieving significant storage
savings and improvements in flexibility.
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