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Abstract—Video Super-Resolution (VSR) is essential for reconstruct-
ing high-definition sequences from correlated video frames. While
Transformer-based VSR methods have improved reconstruction quality,
they require substantial computational resources, limiting deployment
on resource-constrained devices. To tackle this issue, we propose a
novel framework named Dynamic Trajectory Attention and Texture
Adaptive Rooter for Video Super-Resolution (DATA-VSR). There are two
key innovations: the Temporal Redundancy-aware Alignment Network
(TRAN) and the Spatial Redundancy-aware Refinement Network (SRRN).
Specifically, features are aligned by focusing on dynamic temporal
trajectories instead of static redundancies in TRAN, and then features
are adaptively refined based on the texture complexity of different regions
in SRRN. Additionally, the Dual-Domain Enhancement Block (DDEB) is
incorporated to effectively capture global dependencies in the frequency
domain and enhance the representation of local features in the spatial
domain. The experimental results on standard VSR benchmarks show
that DATA-VSR achieves competitive performance with fewer parameters,
lower FLOPs, and a specific reduction of 17%.

Index Terms—Low-Level Vision, Video Super-Resolution, Efficient Video
Process.

I. INTRODUCTION

Video Super-Resolution (VSR) enhances low-resolution (LR) video
frames by generating corresponding high-resolution (HR) versions.
With applications in live streaming [1], video surveillance [2],
and restoring old films [3], VSR has gained significant attention.
Effective frame enhancement in VSR relies on utilizing information
from adjacent frames. According to the propagation of temporal
features, existing VSR methods can be classified into three distinct
paradigms [4]: sliding-window structures [5], [6], recurrent-based
structures [7]–[10] and transformer-based structures [11]–[14].

Sliding-window methods use multiple frames within a small window
and techniques like optical flow to align and fuse temporal features.
However, these methods are constrained by a limited temporal
receptive field and their efficiency is often hindered due to the repeated
computations required for overlapping video frames. Recurrent-based
methods propagate temporal information, offering a broader temporal
receptive field and lower computation loads but struggle with low
re-usability and long-term modeling due to the vanishing gradient
problem [15]. Transformer-based methods employ the self-attention
mechanism to capture distant information [16], significantly improving
super-resolution performance, but their high computational costs hinder
deployment on edge devices.

To promote the employment of VSR models in efficient video
processing, we identify spatial-temporal redundancies in natural videos
and leverage them to minimize unnecessary computation and error
information. As evident in the regions with minimal displacement
highlighted by the blue box in Fig. 1, the temporal redundancy
will hinder information propagation and cause a performance drop.
Additionally, the heatmap in Fig. 1 demonstrates that areas with
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Fig. 1: Illustration of the impact of spatial-temporal redundancy in the
VSR network. Using temporal trajectory attention, the VSR network
extracts complementary information from dynamic regions of past
frames to enhance reconstruction. Temporal redundancy in static
regions hinders propagation, leading to a performance drop. Dark
green areas in the heatmap indicate higher PSNR values and easier
restoration. Results are obtained with the pre-trained TTVSR-M [17].

smooth texture, indicating spatial redundancies, tend to achieve higher
PSNR values more easily than complex textures within video frames.
To better discriminate and utilize these redundancies, we propose
a novel architectural framework: Dynamic Trajectory Attention and
Texture Adaptive Rooter for Video Super-Resolution (DATA-VSR).

DATA-VSR achieves this through the Temporal Redundancy-aware
Alignment Network (TRAN) and the Spatial Redundancy-aware
Refinement Network (SRRN). Both TRAN and SRRN leverage
redundancy-aware mechanisms to efficiently exploit inter-frame and
intra-frame information. TRAN employs an effective self-attention op-
eration inspired by the trajectory-aware transformer [17], focusing on
trajectory segments that contain supplementary temporal information
while ignoring those with temporal redundancy. Subsequently, SRRN
adaptively adjusts its depth based on texture complexity in various
frame regions. Moreover, DATA-VSR integrates several Dual Domain
Enhancement Blocks (DDEB), which employ a three-branch structure
to achieve a larger spatial receptive field and better reconstruction
performance with fewer parameters and FLOPs.

In summary, our contributions are shown as follows:

• We propose a novel architectural framework named DATA-VSR.
It efficiently aggregates inter-frame and intra-frame information
by enhancing the identification and utilization of redundancy.

• We design TRAN and SRRN. TRAN aligns dynamic features
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Fig. 2: The overall architecture of our DATA-VSR. It primarily consists of feature extraction, propagation, alignment, refinement, and
reconstruction. More details of our proposed DATA-VSR can be found in Section II

along trajectories to enhance information propagation, while
SRRN adaptively refines textures to reduce computations.

• We propose DDEB to enhance the performance of feature
extraction and refinement while reducing computational overhead.

II. THE PROPOSED METHOD

A. Method Overview
In the VSR task, the goal is to reconstruct an HR version

from a given LR sequence. DATA-VSR utilizes a recurrent bi-
directional propagation structure, and the forward reconstruction
process is depicted in Fig. 2. To obtain the reconstructed T th frame
xT
SR ∈ RsH×sW×3, we use the current LR frame xT

LR ∈ RH×W×3

and the previous LR frames from 1 to T −1 as supporting data, where
s is the scaling factor and H , W , 3 are the height, width, and number
of channels of the input frames, respectively. DATA-VSR first extracts
shallow features from xT

LR using DDEB and integrates temporal
information along motion trajectories. TRAN enhances inter-frame
alignment by fusing dynamic content instead of temporal redundancy.
SRRN then refines the aligned feature by adapting the network depth
according to texture complexity. Finally, the refined and shallow
features are combined to produce the HR video frame xT

SR.

B. Temporal Redundancy-aware Alignment Network
The alignment process involves both forward and backward

branches, constructed based on motion trajectories in the temporal
dimension. Taking the forward branch of TRAN in Fig. 2 as an
example, the trajectory set T and each trajectory are formulated as:

T = {τi, i ∈ [1,N]},
τi =

{(
xt
i, y

t
i

)
, t ∈ [1, T ]

}
,

(1)

where xt
i ∈ [1, H], yt

i ∈ [1,W ]. (xt
i, y

t
i) denotes the coordinates of

trajectory τi at time t. N is the number of tokens per frame, and i is
the corresponding token index.

To avoid unnecessary computations and propagation of potential
errors when capturing long-term temporal information through self-
attention, DATA-VSR selects complementary dynamic tokens for
precise trajectory attention alignment at the current time T .
1) Temporal Dynamics Selection. TRAN first extracts the queries
Q = ϕ(xT

LR), keys K = ϕ(x1:T−1
LR ), and values V = φ(x1:T−1

LR )

used for self-attention along the trajectory from the video frames,
where ϕ(·) denotes a shallow feature extraction network built from
stacked DDEB. ϕ(·) is integrated with TRAN and SRRN to construct
a deep feature refinement network φ(·).

To discriminate the temporal redundancy in the current frame,
TRAN uses feature differences between adjacent frames to generate a
binary mask with a uniform threshold and employs a Gumbel-Softmax
gate for sampling [18]. Specifically, it facilitates joint training of
the mask prediction network with the VSR network, where distinct
masking features MT−1→T for various videos are formulated as:

MT−1→T =
exp ((log (π1) + g1) /σ)∑2
i=1 exp ((log (πi) + gi) /σ)

, (2)

where g1 and g2 are Gumbel noise samples. π1 and π2 represent
the probabilities of the presence and absence of complementary
information, respectively, and are formulated as:

π1 = Sigmoid(f(∆QT−1→T )),

π2 = 1− π1,
(3)

where f(·) denotes an MLP layer for weighted sums of feature
differences. σ is the temperature coefficient. ∆QT−1→T is the
difference between normalized features. The masking feature enables
TRAN to generate the alignment binary mask Ma and dynamic
trajectories set T̃ , which are formulated as:

Ma =

{
1, if MT−1→T > 0.5,
0, else,

T̃ = T ×Ma = {τ̃i, i ∈ [1,M]},
(4)

where M is the number of selected dynamic trajectories with M far less
than N and 0.5 is the threshold. Based on these selected trajectories,
the corresponding tokens Q̃, K̃, and Ṽ for long trajectory attention
alignment are formulated as:

Q̃ = {qτ̃T
i
, i ∈ [1,M]},

K̃ = {kτ̃t
i
, i ∈ [1,M], t ∈ [1, T − 1]},

Ṽ = {vτ̃t
i
, i ∈ [1,M], t ∈ [1, T − 1]},

(5)

2) Trajectory-based Attention Alignment. Once the trajectories with
complementary information are selected, the self-attention operations
are applied to the dynamic features along these trajectories to achieve
alignment. The aligned feature fT

a can be formulated as:



fT
a = Atraj(qτ̃T

i
, kτ̃t

i
, vτ̃t

i
), (6)

where Atraj represents the trajectory attention alignment operation
and is formulated as:

Atraj(qτ̃T
i
, kτ̃t

i
, vτ̃t

i
) = F(qτ̃T

i
, s⊙ vτ̃h

i
), (7)

where F(·) represents feature concatenation and fusion operation. h
and s, representing the outcomes of hard and soft attention operations,
respectively, are formulated as:

h = argmax
t

⟨
qτ̃T

i

∥ qτ̃T
i

∥
2

,
kτ̃t

i

∥ kτ̃t
i
∥
2

⟩,

s = max
t

⟨
qτ̃T

i

∥ qτ̃T
i

∥
2

,
kτ̃t

i

∥ kτ̃t
i
∥
2

⟩,
(8)

where ⟨·⟩ and ∥ · ∥2 represent the dot product and the Euclidean norm
operations, respectively.
3) Propagated Tokens Update. Following the alignment of the selected
dynamic features, the updated features in forward propagation f̂T

a

can be formulated as:

f̂T
a = fT

a + f̂T−1
r × (1−Ma), (9)

where f̂T−1
r denotes the propagated features after being fully refined

by network φ(·) from the previous step.

C. Spatial Redundancy-aware Refinement Network
1) DCT-based Texture Selection. Inspired by temporal dynamics
selection, SRRN is designed to adaptively allocate computational
resources within a frame based on texture complexity. By leveraging
the Discrete Cosine Transform (DCT) [19], SRRN takes advantage
of the low-frequency energy concentration property, where complex
textures with high-frequency components correspond to lower energy.
This property is used to derive M texture

i,j for selective refinement,
which can be formulated as:

M texture
i,j =

{
1, E2

i,j ≤ threshold,
0, E2

i,j > threshold,
(10)

where E2
i,j denotes the average energy of the corresponding patch

obtained from the DCT transform and (i, j) denotes the coordinate of
the patch. Therefore, SRRN avoids causing unnecessary computational
costs in spatially redundant areas like regions of the sky and applies
additional refinement only to complex textures like tiled surfaces.
2) Dual-Domain Enhancement Block. As depicted in Fig. 3, the
DDEB is proposed to enhance the feature representation capability of
DATA-VSR, replacing the conventional convolutional residual blocks
in both shallow feature extraction and deep feature refinement layers,
thereby overcoming the limitations in representational capacity.

DDEB adopts a three-branch structure: the frequency branch
leverages fast Fourier transform [20], [21] convolutions to capture
global spatial dependencies, the spatial branch extracts local features
through conventional convolutions, and the channel branch employs
a channel attention mechanism [22] to enhance critical channels. The
interactive fusion of features from these branches balances global
and local information, improving reconstruction performance while
reducing parameter count and FLOPs.

III. EXPERIMENT
A. Training Details

During the training process, we use a Cosine Annealing scheme [35]
and an Adam optimizer [36] with β1 = 0.9 and β2 = 0.99. The
learning rates for the motion estimation and other model components
are set as 1.25× 10−5 and 1× 10−4, respectively. The Charbonnier
penalty loss [37] Lsr =

√
∥xHR − xSR∥2 + ε2 is applied on the

split
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Fig. 3: The overall architecture of our DDEB.

reconstructed image xSR and the ground truth image xHR, where ε
is a constant and is set as 10−3. We also impose an ℓ1 loss Lmask =
1
T

∑T
t=1 ∥MT−1→T ∥ on the mask for alignment to promote more

effective masking. Thus, the final loss L can be formulated as:

L = Lsr + λLmask. (11)

where λ is used to adjust the masking ratio.
Referenced as BasicVSR [7], we also adopt two widely-used

datasets for training: REDS [23] and Vimeo-90K [24]. The training
process contains two stages. A base model without redundancy-aware
capability is trained for 400K iterations, and the model is fine-tuned
with the redundancy selection module for an additional 100K iterations.
During the fine-tuning stage, a DCT threshold of 150 and a patch
size of 4 are empirically set to identify complex textures.

B. Evaluation Metrics
Generated video quality is evaluated with Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [38].
Model efficiency is evaluated based on the number of learnable
parameters, floating-point operations per second (FLOPs) for an LR
frame size of 180× 320, and average runtimes on the REDS4 [23].

C. Comparison with Other Methods
We conduct a comparative analysis of DATA-VSR’s performance

against leading VSR methods under limited computational resources.
1) Quantitative Comparison. We evaluate the performance of our
DATA-VSR model against state-of-the-art (SOTA) methods using
datasets REDS4 [23], Vimeo90K [24], Vid4 [25] and UDM10 [26] as
shown in TABLE I. Compared to the representative sliding window-
based model EDVR [6], DATA-VSR achieves notable performance
gains of 0.11 dB to 0.46 dB on longer sequence datasets and a nearly
tenfold reduction in FLOPs. Compared to recurrent-based methods
such as BasicVSR [7] and TTVSR [17], with TTVSR-M retrained to
match BasicVSR’s residual blocks for fair comparison, DATA-VSR
achieves a 17% reduction in FLOPs, a 33% decrease in parameters,
and a 0.14 dB PSNR improvement on the Vid4 dataset. Furthermore,
compared to the recent efficient VSR model like SKipVSR [34], DATA-
VSR achieves up to 0.95 dB PSNR gains with a 15% reduction in
parameters.
2) Qualitative Comparison. We conduct a qualitative comparison of
DATA-VSR and SOTA methods on the Vid4 dataset. As shown in
Fig. 4a, DATA-VSR significantly improves visual quality, especially in
complex textured areas. Additionally, the result of the Local Attention
Map (LAM) [39] in Fig. 4b reveals that DATA-VSR has a much
larger receptive field than TTVSR-M and integrates more relevant
information from the surrounding regions.

D. Ablation Study
To evaluate the effectiveness of each component in DATA-VSR,

we conduct the following ablation studies on the REDS4 dataset [23].



TABLE I: Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for video super-resolution (×4).

Method BI degradation BD degradation
Params (M) FLOPs (T) Runtime (ms) REDS4 [23] Vimeo-90K-T [24] Vid4 [25] UDM10 [26] Vimeo-90K-T [24] Vid4 [25]

Bicubic - - - 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246
DUF [27] 5.8 2.34 974 28.63/0.8251 - - 38.48/0.9605 36.87/0.9447 27.38/0.8329
RBPN [28] 12.2 8.51 1507 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 -
EDVR-M [6] 3.3 0.46 118 30.53/0.8699 37.09/0.9446 27.10/0.8186 39.40/0.9663 37.33/0.9484 27.45/0.8406
EDVR [6] 20.6 2.95 378 31.09/0.8800 37.61/0.9489 27.35/0.8264 39.89/0.9686 37.81/0.9523 27.85/0.8503
BoostedEDVR [29] 3.3 0.31 260 30.53/0.8699 - 25.32/0.7950 - - -
MuCAN [30] 13.6 1.07 - 30.88/0.8750 37.32/0.9465 - - - -
BasicVSR [7] 6.3 0.34 63 31.42/0.8909 37.18/0.9450 27.24/0.8251 39.96/0.9694 37.53/0.9498 27.96/0.8553
BoostedBasicVSR [29] 6.3 0.51 93 31.42/0.8917 - - - - -
VSRT [12] 32.6 2.91 367 31.19/0.8815 37.71/0.9494 27.36/0.8258 - - -
TTVSR-M [17] 4.45 0.36 91 31.50/0.8927 37.09/0.9442 27.43/0.8283 40.14/0.9699 37.45/0.9493 28.08/0.8588
R2D2 [31] 8.25 - - - - - 39.40/0.9662 - 28.07/0.8537
DPR [32] 6.3 0.36 48 31.38/0.8907 37.11/0.9446 27.19/0.8243 39.72/0.9684 37.24/0.9461 27.89/0.8539
LGDFNet [33] 9.8 - 92 31.54/0.8911 - 27.44/0.8395 40.23/0.9703 - 28.40/0.8556
SkipVSR [34] 4.9 0.34 58 30.60/0.8726 36.39/0.9365 26.54/0.7924 39.05/0.9645 36.73/0.9398 26.98/0.8434
DATA-VSR (Ours) 4.24 0.30 88 31.55/0.8934 37.19/0.9452 27.46/0.8303 40.18/0.9703 37.55/0.9501 28.22/0.8603

DUF BasicVSREDVR

GTTTVSR-M DATA-VSR (Ours)Frame 003, Clip city, Vid4

GTTTVSR-M DATA-VSR (Ours)

BasicVSREDVRDUF

Frame 020, Clip walk, Vid4

(a) Visual comparison for 4× VSR on the Vid4 dataset
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(b) The comparative result of the LAM for adjacent frames obtained by
TTVSR-M and DATA-VSR

Fig. 4: Qualitative comparison on the REDS4 [23] and Vid4 [25]
dataset.

TABLE II: Ablation study result of Redundancy-aware Network (RN)
and DDEB in our DATA-VSR.

Module DDEB TRAN SRRN PSNR/SSIM ↑ FLOPs (G) ↓ Param (M) ↓
Base % % % 31.50/0.8927 363.40 4.447

Base+RN % ! ! 31.39/0.8909 320.94 4.447
Base+DDEB ! % % 31.53/0.8930 341.71 4.244

Base+RN+DDEB ! ! ! 31.55/0.8934 301.21 4.244

1) Validity of Redundancy-aware Network (RN) and DDEB.
We use a base model without redundancy-aware alignment and

refinement, replacing the DDEB with a conventional convolutional
residual block. As shown in TABLE II, the proposed RN effectively
discriminates and utilizes redundancy, leading to a 12% reduction in
FLOPs. Additionally, the proposed DDEB compensates for the RN’s
performance drop while reducing parameters by 0.2 M. By integrating
both RN and DDEB, the proposed DATA-VSR not only achieves
0.05 dB gains in PSNR but also results in a 17% reduction in FLOPs
compared to the base model.

TABLE III: Ablation study result of the temporal redundancy masking
strategy

TRM strategy PSNR/SSIM↑ FLOPs (G) ↓ Param (M) ↓ Runtime (ms) ↓
Uniform 31.50/0.8923 301.20 4.243 101
Random 31.50/0.8923 301.20 4.243 105
Gumbel 31.55/0.8934 301.21 4.244 88

TABLE IV: Ablation study result of the spatial redundancy masking
strategy

SRM strategy PSNR/SSIM↑ FLOPs (G) ↓ Param (M) ↓ Runtime (ms) ↓
Uniform 31.50/0.8925 322.44 4.244 75
Random 31.49/0.8925 322.07 4.244 80

DCT-Based 31.55/0.8934 301.21 4.244 88

2) Effectiveness of the Redundancy Masking Strategy. Our proposed
Gumbel-based and DCT-based masks achieve a 16% improvement in
inference speed and a 7% reduction in FLOPs, with at least 0.05 dB
gains in PSNR, outperforming random and uniform masks, as shown
in TABLE III and IV.

IV. CONCLUSION

In this paper, we propose DATA-VSR to efficiently aggregate
inter-frame information through TRAN and intra-frame information
through SRRN. TRAN aligns dynamic features along trajectories,
skipping temporal redundancies, while SRRN adaptively refines
complex textures to minimize computations on spatial redundancies.
Furthermore, the proposed three-branch structure DDEB further
enhances the receptive field and improves the reconstruction quality.
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