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ABSTRACT
Depth maps have been still suffering from some non-
negligible effects, resulting from the consumer-level sensors.
The limited resolution of the acquired depth maps is one of
these annoying issues. Many prominent researchers have re-
cently made a lot of efforts, such as traditional filters, as
well as the deep learning paradigms. However, depth super-
resolution is still an open challenge. In this paper, we design
a texture-depth transformer for depth super-resolution task,
which can learn the corresponding structural information of
the high-resolution texture images and the corresponding in-
terpolated depth maps. Moreover, a multi-scale feature fu-
sion strategy is exploited to further enhance the fusion feature.
Complementary to a quantitative evaluation, we demonstrate
the effectiveness of the proposed approach.

Index Terms— Transformer, Depth super-resolution,
CNN, Residual learning

1. INTRODUCTION

Depth maps can accurately describe the structure information
of scene due to each pixel value in depth maps represents the
distance information corresponding to the scene. Neverthe-
less, due to the imaging limitation of depth sensors in prac-
tice, high quality and high resolution (HR) depth maps are
difficult to be acquired directly. In the last decades, many
depth super-resolution (SR) methods have been applied to re-
cover the degraded depth maps, including traditional filter-
based methods [1] [2], optimization-based methods [3] [4]
and some latest convolutional neural network(CNN)-based
methods [5] [6].

Early researchers concentrate on utilizing the local infor-
mation to enhance the interpolated depth maps, especially for
the edge information. Thus, some works based on low pass
filter [1] [2] introduce edge guided information to interpolate
the low resolution (LR) depth maps. However, depth bound-
aries are generally hard to reconstruct from LR depth maps
and easy to lose sharpness particularly at large magnifica-
tion factors due to the loss of spatial information. To refine
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Fig. 1. Visual analysis of transformer feature.

the loss information, the optimization-based methods [3] [4]
employed hand-craft optimization function and regularization
term to constrain the edge structure of the interpolated depth
maps, but accompanied by high computational cost and poor
universality, which limits its application range.

With the rising of deep learning techniques, CNN has
achieved most impressive performance in many computer vi-
sion tasks and recently has been applied to depth SR. As we
observed, the backbone network of existing depth SR meth-
ods can be classified into two categories. On one hand, some
researchers try to utilize low-to-high resolution networks to
progressively extract features and raise the spatial resolu-
tion, which is similar as some classical single image super-
resolution (SISR) methods [7] [8]. On another hand, the cor-
responding texture information is employed as guidance to
recover the degraded depth maps [5] [6] [9]. Most of these ap-
proaches make the texture structural as the prior knowledge,
however, texture discontinuities do not always coincide with
depth maps, which results in texture blending in the recon-
structed depth maps. Therefore, how to leverage texture infor-
mation to help recover the depth maps and whether the texture
images are required for all interpolation ratios,especially for
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the 2× and 4×, still need to be developed and verified.
In this paper, we try to design a novel texture-depth trans-

former network (TDTN) for depth SR task, which aims to
explore what texture information matters with depth SR. We
introduce a transformer to learn the useful content informa-
tion and structure information for depth SR task, from the
interpolated depth maps and the corresponding texture im-
ages, respectively. Then, a multi-scale fusion strategy is ex-
ploited to improve the efficiency of texture-depth fusion. Ex-
perimental results show that the transformer indeed learn use-
ful structural information from the corresponding texture im-
ages. Benefiting from the multi-scale fusion, the reconstruc-
tion quality of depth maps has been largely improved on sub-
jective and objective evaluation.

2. RELATED WORK

The structural similarity between texture images and depth
maps is the basis of texture-guided depth SR. Hui et al. [10]
design a multi-scale guided convolutional network (MSG-
Net) by complementing LR depth features with HR intensity
features of texture images. Zhao et al. [11] present a texture-
depth generative adversarial network (GAN) to learn the ge-
ometry structural similarity of texture-depth. Guo et al. [5]
present a named DepthSR-Net to fuse the texture-depth fea-
tures in different scales, which is built on a residual U-Net
deep network architecture. In their work, the hierarchical fea-
tures are extracted by encoder-decoder structure of U-Net and
the final HR depth map is achieved by adding the learned
residual to the interpolated depth map. Different from above
methods, Lutio et al. [12] propose an alternative interpreta-
tion of guided SR, which tries to find a transformation from
the guide to the target, particularly a pixel-wise mapping from
one image domain to another.

In fact, transformer has been proved the success in various
natural language processing (NLP) tasks. Recently, many at-
tempts are made to explore the benefits of transformer in com-
puter vision tasks [13]. To utilize the information of relevant
textures from reference images, the attention mechanism is
an efficiency solution to transfer interesting regions from the
reference images. Wang et al. [14] introduce a non-local oper-
ation, which is the first adaptation of the dot-product attention
mechanism for long-range dependency modeling in computer
vision. Different from dot-product attention and its variants,
Shen et al. [15] propose a novel efficient attention mechanism
equivalent to dot-product attention. This dot-product atten-
tion aggregates the values by the template attention maps to
form global context information. In [16], Yang et al. propose
a novel texture transformer network, where attention mech-
anism is used to transfer HR textures from reference images
by LR images as quires and HR reference images as keys in a
transformer. Motivated by these, we are encouraged to bridge
between depth maps and texture images to guide the SR of
depth maps.

3. PROPOSED METHOD

3.1. Network Architecture

Given a LR depth map DLR, it is firstly up-sampled to the
same spatial scale D̃HR corresponding to the HR texture im-
age THR. Firstly, a pre-trained VGG model based on Ima-
geNet is used to construct texture-depth semantic feature rep-
resentation. Secondly, we design a texture-depth transformer
module(TDTM), using the texture-depth transformer mecha-
nism to convert the structural information of texture features
onto the corresponding depth features. Furthermore, a multi-
scale feature fusion strategy(MSF) is adopt to fuse the fusion
features at multiple scales. Finally, the depth feature recon-
struction module is used to obtain the reconstruction result of
the HR depth map. Fig. 2 gives the diagram of our designed
network.

3.2. Texture-Depth Transformer

Texture-Depth Transformer aims to explore what texture in-
formation matters with depth SR. As we all known, the gen-
eral texture-guided depth SR methods assume that the struc-
ture is spatial uniform between depth maps and texture im-
ages. However, the spatial discontinuities between texture
and depth information are always unavoidable due to the ac-
quisition environment. Therefore, it is necessary to find uni-
form reference features from texture images to adapt the depth
maps, not limited in spatial coordinate.

Based on the extracted texture features and depth features,
we first use 3 convolutional layers with 1 × 1 to map fea-
tures into three standard transformer paradigms Q(query) ∈
R(HW )×Ci , K(key) ∈ R(HW )×Ci and V (value) ∈
R(HW )×Co1. Targetting to enhance the depth features by us-
ing the corresponding texture features, we construct a depth
feature template based on K and V which is largely differ-
ent from the common transformer. In the feature extraction
module, we exploit two separate convolution filters to gener-
ate different representations of depth features. Then a self-
attention mechanism is applied to generate the feature tem-
plate. On the other hand, Q is the corresponding texture fea-
tures by stacking cascade convolutional layers. Therefore, the
texture transformer can be formulated as,

FT = Q
(

softmax(K>)V
)
, (1)

where softmax(K>)V is a self-attention mechanism. And
the self-attention matrix with size of Ci × Co represents Ci

attention maps, which can be viewed as a global semantic in-
formation description. In order to transform texture features,
the module choose reliable features from the Q according to
the depth semantic template. Then, the transformed texture
feature FT ∈ RHW×Co is reshaped as FT ∈ RH×W×Co to

1H and W denote the size of input features, Ci and Co indicates the
input and output channel number, respectively.
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Fig. 2. The architecture of the proposed Texture-Depth Transformer Network (TDTN).

concatenate with LR depth features from the backbone net-
work to generate texture-depth fused features.

3.3. Multi-scale feature fusion

In order to further integrate the texture-depth fusion features,
We adopt a multi-scale feature fusion strategy. As mentioned
in Sec. 3.2, we can obtain three-scale texture-depth fusion fea-
tures, which not only contains the required structural informa-
tion corresponding to depth features, but includes the feature
transform cross different scales. Thereby, we also conduct a
cross-scale feature fusion as shown in Fig. 3. Firstly, a resid-
ual block is used to further implement fused feature the trans-
form on feature space. Then, to exchange structural infor-
mation with cross-scale, we use Bicubic method to scale the
size of different fused features for matching the spatial size.
At last, we apply a 1 × 1 convolution operation to fuse these
features, as

Fout =WT ∗
[
F 1
r , F

1
2
r ↑2×, F

1
4
r ↑4×

]
+ b (2)

where ↑ is up-sampling operation, F 1
r , F 1/2

r and F
1/4
r are

the fused texture-depth features by a CNN block at different
scales, respectively.

3.4. Implementation details

As shown in Fig. 2, some details of the designed network are
described as follows. The feature extraction module in the
texture-depth transformer is composed of the first 12 layers
of VGG-19 [17], including 5 convolutional layers with ReLU
and 2 pooling layers. Therefore, the transformed texture fea-
tures and the fused features are scaled to different spatial res-
olutions, which are 1, 1/2 and 1/4, respectively.

Except for the convolutional layer with labeled parame-
ters, the size of the convolution kernel is 3, the number of

Fig. 3. The architecture of multi-scale feature fusion.

channels is 64 and the batch size is 16. L1 Loss is used to
train of TDTN, with 200 epochs and initial learning rate is
10−4. The network is optimized by the ADAM with β1 = 0.9,
β2 = 0.999, E = 10−8.

4. EXPERIMENTS

In this section, we design several experiments to verify the
efficiency of our proposed method. Just like as [10], for
training, we select 34 pairs of texture-depth images from the
”Middlebury Datasets” [18] and 58 pairs of texture-depth im-
ages from the ”MPI Sintel depth” dataset [19], repectively.
For evaluation, we choose 10 pairs of texture-depth images
from ”Middlebury Datasets” as the testing set, including Art,
Books, Moebius, Dolls, Laundry, Reindeer, Tsukuba, Venus,
Teddy and Cones.

We pre-process the original HR depth maps by using
Bicubic algorithm to obtain the LR depth maps. During train-
ing, random rotation and flip operations are employed for data
augmentation. The root mean square error (RMSE) and the
peak signal to noise ratio (PSNR) are used to evaluate the
performance.
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Table 1. Quantitative comparisons on test for 2× scaling fac-
tor in terms of RMSE values

Method Art Books Moebius Dolls Laundry Reindeer Tsukuba Venus Teddy Cones Avg
Bicubic 2.66 1.08 0.85 0.94 1.61 1.97 5.81 1.32 1.99 2.45 2.068
GF [20] 3.14 1.28 1.09 1.09 1.87 2.17 6.82 1.29 2.21 2.99 2.395

SRAM [4] 1.67 1.02 0.72 0.97 1.43 1.67 / / / / 1.247
GSR-PPT [12] 4.57 1.57 1.51 1.30 1.99 2.48 9.99 1.46 2.41 3.44 3.072

SRCNN [7] 2.48 1.03 0.81 0.90 1.52 1.84 5.47 1.27 1.88 2.34 1.954
PS-DMSR [21] 0.66 0.54 0.52 0.58 0.52 0.59 1.41 0.56 0.85 0.88 0.711

MSG [10] 0.66 0.37 0.36 0.35 0.37 0.42 1.85 0.14 0.71 0.90 0.613
RDN-GDE [22] 0.56 0.36 0.38 0.56 0.48 0.51 / / / / 0.475
MFR-SR [23] 0.71 0.42 0.42 0.60 0.61 0.65 / / / / 0.568

PMBA [6] 0.61 0.41 0.39 0.36 0.38 0.40 / / / / 0.425
DepthSR [5] 0.53 0.42 / / 0.44 0.51 1.33 / 0.83 / 0.677
Ours(TDTN) 0.37 0.28 0.31 0.34 0.30 0.34 1.01 0.16 0.54 0.59 0.424

Table 2. Quantitative comparisons on test for 4× scaling fac-
tor in terms of RMSE values

Method Art Books Moebius Dolls Laundry Reindeer Tsukuba Venus Teddy Cones Avg
Bicubic 3.90 1.63 1.29 1.33 2.39 2.86 8.56 1.91 2.90 3.60 3.037
GF [20] 3.82 1.62 1.32 1.30 2.34 2.69 8.44 1.69 2.73 3.63 2.958

SRAM [4] 2.57 1.33 0.85 1.07 2.00 2.07 / / / / 1.648
GSR-PPT [12] 3.79 1.65 1.44 1.32 1.99 2.43 9.96 1.48 2.39 3.71 3.016

SRCNN [7] 3.71 1.58 1.23 1.28 2.31 2.73 8.11 1.85 2.77 3.43 2.900
PS-DMSR [21] 1.59 0.83 0.86 0.91 0.92 1.11 3.73 0.72 1.58 2.38 1.463

MSG [10] 1.47 0.67 0.66 0.69 0.79 0.98 4.29 0.35 1.49 2.60 1.399
RDN-GDE [22] 1.47 0.62 0.69 0.88 0.96 1.17 / / / / 0.965
MFR-SR [23] 1.54 0.63 0.72 0.89 1.11 1.23 / / / / 1.020

PMBA [6] 2.04 0.92 0.84 0.95 1.14 1.39 / / / / 1.213
DepthSR [5] 1.20 0.60 / / 0.78 0.96 3.26 / 1.37 / 1.362
Ours(TDTN) 1.24 0.48 0.61 0.76 0.68 0.95 3.50 0.36 1.21 1.56 1.135

4.1. Comparison Experiments

We choose Bicubic, GF [20], SRAM [4] as representatives of
the classical traditional methods, and some CNN-based meth-
ods including GSR-PPT [12], SRCNN [7], PS-DMSR [21],
MSG [10], RDN-GDE [22], MFR-SR [23], PMBA [6],
DepthSR [5]. When the scale factor is 2×, 4×, and 8×, the
objective quality comparison results of the depth SR recon-
struction are shown in Table. 1 to Table. 3. The best and the
second best are indicated in bold and underline, respectively.

As shown in Table. 1 to Table. 3, for different scale fac-
tors, our model almost achieves the best results in the most
of testing depth maps. Specially, when scale factor is 4×
and 8×, respectively, the average RMSE performance of our
model slightly inferior to MFR-SR [23] and RDN-GDE [22].
However, in each given testing result, our performance is bet-
ter than these both methods. Moreover, when the scale factor
is 8×, the RMSE result of our model on the ”Art” is also
0.23 higher than that of the DepthSR [5], but in the subjec-
tive evaluation (as shown in Fig. 5), our model indeed retains
more edge detail information compared to DepthSR [5].

Some visual results are shown in Fig. 4 and Fig. 5. It can
prove that the texture features are indeed helpful to depth SR.
Especially for the sharp edges, all of DepthSR [5], PMBA [6]
and our model can clearly recover the edges, compared to
Bicubic and SRCNN [7]. Nevertheless, DepthSR [5] and
PMBA [6] justly use texture images of different scales ac-
cording to the coordinate, and both the extracted depth fea-
tures and texture features are directly concatenated to imple-
ment the feature fusion, which results in the blending on the

Table 3. Quantitative comparisons on test for 8× scaling fac-
tor in terms of RMSE values

Method Art Books Moebius Dolls Laundry Reindeer Tsukuba Venus Teddy Cones Avg
Bicubic 5.50 2.36 1.89 1.87 3.43 4.05 12.3 2.76 4.07 5.30 4.353
GF [20] 5.34 2.30 1.86 1.80 3.32 3.87 12.1 2.58 3.91 5.22 4.230

SRAM [4] 3.20 1.46 1.10 1.19 2.11 2.47 / / / / 1.922
GSR-PPT [12] 3.98 1.82 1.51 1.36 2.03 2.57 10.0 1.51 2.46 3.95 3.119

SRCNN [7] 5.28 2.30 1.84 1.82 3.32 3.92 11.8 2.67 3.95 5.15 4.205
PS-DMSR [21] 2.57 1.19 1.21 1.31 1.52 1.80 7.79 1.09 2.88 4.66 2.602

MSG [10] 2.46 1.03 1.02 1.05 1.51 1.76 8.42 1.04 2.76 4.23 2.528
RDN-GDE [22] 2.60 1.00 1.05 1.21 1.63 2.05 / / / / 1.590
MFR-SR [23] 2.71 1.05 1.10 1.22 1.75 2.06 / / / / 1.648

PMBA [6] 3.63 1.68 1.41 1.47 2.19 2.74 / / / / 2.187
DepthSR [5] 2.22 0.89 / / 1.31 1.57 6.89 / 1.85 / 2.455
Ours(TDTN) 2.45 0.86 0.91 1.15 1.29 1.75 8.86 0.80 2.20 3.09 2.336

edge regions. Partly because the consistence between depth
maps and texture images cannot be guaranteed in practice.
However, our model utilizes the TDTM to select the reliable
texture features to adapt with depth features, and uses a multi-
scale feature fusion mechanism to implement the features fu-
sion at different scales, thereby, the edge detail information of
depth maps is better restored.

4.2. Ablation experiments

To explore what matters with depth SR in our model, we con-
struct different ablation experiments. Experimental setup set
that the scale factor is 2×.

4.2.1. Ablation study on Transformer

As is shown in Table. 4, where ”T-Q and T-KV” denotes all
Q, K and V are the features extracted from THR, and the
degraded depth map D̃HR is not required in the designed
network. The ”D-Q and D-KV” represents the Q is the ex-
tracted feature from D̃HR and K, V are from THR. And the
”Non-transformer” indicates the model directly fuses the tex-
ture features from THR and depth features from D̃HR in the
form of coordinate. In addition, the ”T-Q and D-KV” is our
setting as mentioned in Sec. 3.2.

Table 4. Ablation study on Transformer
Method PSNR/RSME

T-Q and T-KV 55.79/0.47
D-Q and T-KV 55.91/0.47

Non-transformer 56.13/0.46
T-Q and D-KV 56.23/0.45

As shown in Table 4, ”T-Q and ”D-KV” setting achieves
the best performance of SR, and the corresponding PSNR
value is 0.47dB higher than that of the ”texture-Q and texture-
KV”, 0.32dB higher than that of the ”depth-Q and texture-
KV”, and 0.10dB higher than the ”Non-transformer”.

The visual features are shown in Fig. 1. Fig. 1(b) is the
extracted depth features, while the corresponding texture fea-
tures contain a lot of texture information, such as uselessly
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(a) Ground truth (b) Bicubic (c) SRCNN (d) PMBA (e) DepthSR (f) Ours

Fig. 4. Visual quality comparison results of the depth map ”Reindeer” at scale 4×.

(a) Ground truth (b) Bicubic (c) SRCNN (d) PMBA (e) DepthSR (f) Ours

Fig. 5. Visual quality comparison results of the depth map ”Art” at scale 8×.

edge inside the surface of the image, as shown in Fig. 1(c).
The ”T-Q and T-KV” tries to learn the texture features in the
form of self attention, thus the extracted features focus on the
semantic level, rather than edges, as shown in Fig. 1(d). On
the other hand, by using the ”D-Q and T-KV”, the edge infor-
mation can be enhanced, but the texture semantic information
is discarded. It means that probably few texture features can
be transferred, as shown in Fig. 1(e). The ”T-Q and D-KV”
uses the semantic information of the depth map as a template
and select proper texture features to match with the distri-
bution of depth features, as shown in Fig. 1(f) . Therefore,
the transformed texture features not only retain the guidance
information needed in the depth map reconstruction process,
but also the interference information on the surface of the tex-
ture object is suppressed to a certain extent.

4.2.2. Ablation study on Texture-depth transformer network

In order to verify and analyze the role of each module in the
network structure, we use the LR depth features extracted by
the Backbone network composed of 5-layer residual blocks
and three-scale texture features extracted by the VGG-19 net-
work as the baseline in this experiment, and then add Residual
learning (RL), Multi-Scale Fusion (MSF) and Transformer
(T) to verify the role of each module. The experimental re-
sults are shown in Table. 5.

As we all known, RL can reduce the training difficulty of
the network, and the reconstruction results reduces by 0.07
on RMSE compared to Baseline.When we further introduce
the MSF module, its RMSE is reduced by 0.03. Lastly, the
TDTM furthermore improve the performance of depth SR due
to the possible advantage mentioned above.

Table 5. Ablation study on texture-depth transformer network

Method RL MSF T PSNR/RSME
Baseline 54.45/0.56

Baseline+RL X 55.41/0.49
Baseline+RL+MSF X X 56.13/0.46

Baseline+RL+MSF+T X X X 56.23/0.45

5. CONCLUSION

In this paper, a texture-depth transformer is proposed for
depth super-resolution task which can learn the corresponding
structural information of the HR texture images and the cor-
responding interpolated depth maps. Furthermore, a multi-
scale feature fusion strategy is adopt to fuse the fused fea-
tures at multiple scales. Extensive experiments demonstrate
the superior performance of our TDTN over state-of-the-art
approaches on both quantitative and qualitative evaluations.

Acknowledgment: This work is supported by National
Natural Science Foundation of China(No. 61972028, No.
61902022) and the Fundamental Research Funds for the
Central Universities (No. 2019JBM018, No. FRF-TP-19-
015A1), the computing work is partly supported by USTB
MatCom of Beijing Advanced Innovation Center for Materi-
als Genome Engineering.

6. REFERENCES

[1] Ming-Yu Liu, Oncel Tuzel, and Yuichi Taguchi, “Joint
geodesic upsampling of depth images,” in Proceedings

5

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on January 10,2023 at 05:25:23 UTC from IEEE Xplore.  Restrictions apply. 



of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2013, pp. 169–176.

[2] Jingyu Yang, Xinchen Ye, Kun Li, Chunping Hou, and
Yao Wang, “Color-guided depth recovery from rgb-d
data using an adaptive autoregressive model,” IEEE
Transactions on Image Processing, vol. 23, no. 8, pp.
3443–3458, 2014.

[3] Meiqin Liu, Yao Zhao, Jie Liang, Chunyu Lin, Hui-
hui Bai, and Chao Yao, “Depth map up-sampling with
fractal dimension and texture-depth boundary consisten-
cies,” Neurocomputing, vol. 257, pp. 185–192, 2017.

[4] Jin Wang, Wei Xu, Jian-Feng Cai, Qing Zhu, Yunhui
Shi, and Baocai Yin, “Multi-direction dictionary learn-
ing based depth map super-resolution with autoregres-
sive modeling,” IEEE Transactions on Multimedia, vol.
22, no. 6, pp. 1470–1484, 2019.

[5] Chunle Guo, Chongyi Li, Jichang Guo, Runmin Cong,
Huazhu Fu, and Ping Han, “Hierarchical features driven
residual learning for depth map super-resolution,” IEEE
Transactions on Image Processing, vol. 28, no. 5, pp.
2545–2557, 2018.

[6] Xinchen Ye, Baoli Sun, Zhihui Wang, Jingyu Yang, Rui
Xu, Haojie Li, and Baopu Li, “Pmbanet: Progres-
sive multi-branch aggregation network for scene depth
super-resolution,” IEEE Transactions on Image Pro-
cessing, vol. 29, pp. 7427–7442, 2020.

[7] Chao Dong, Chen Change Loy, Kaiming He, and Xi-
aoou Tang, “Image super-resolution using deep convo-
lutional networks,” IEEE transactions on pattern analy-
sis and machine intelligence(TPAMI), vol. 38, no. 2, pp.
295–307, 2015.

[8] Xibin Song, Yuchao Dai, Dingfu Zhou, Liu Liu, Wei Li,
Hongdong Li, and Ruigang Yang, “Channel attention
based iterative residual learning for depth map super-
resolution,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2020, pp. 5631–5640.

[9] Zhongyu Jiang, Huanjing Yue, Yu-Kun Lai, Jingyu
Yang, Yonghong Hou, and Chunping Hou, “Deep edge
map guided depth super resolution,” Signal Processing:
Image Communication, vol. 90, pp. 116040, 2020.

[10] Tak-Wai Hui, Chen Change Loy, and Xiaoou Tang,
“Depth map super-resolution by deep multi-scale guid-
ance,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2016, pp. 353–369.

[11] Lijun Zhao, Huihui Bai, Jie Liang, Bing Zeng, Anhong
Wang, and Yao Zhao, “Simultaneous color-depth super-
resolution with conditional generative adversarial net-
works,” Pattern Recognition(PR), vol. 88, pp. 356–369,
2019.

[12] Riccardo de Lutio, Stefano D’aronco, Jan Dirk Weg-
ner, and Konrad Schindler, “Guided super-resolution
as pixel-to-pixel transformation,” in Proceedings of

the IEEE International Conference on Computer Vision
(ICCV). IEEE, 2019, pp. 8829–8837.

[13] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko, “End-to-end object detection with trans-
formers,” arXiv preprint arXiv:2005.12872, 2020.

[14] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He, “Non-local neural networks,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2018, pp. 7794–
7803.

[15] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi,
and Hongsheng Li, “Efficient attention: Attention with
linear complexities,” arXiv preprint arXiv:1812.01243,
2018.

[16] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and
Baining Guo, “Learning texture transformer network
for image super-resolution,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2020, pp. 5791–5800.

[17] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[18] Daniel Scharstein and Richard Szeliski, “A taxonomy
and evaluation of dense two-frame stereo correspon-
dence algorithms,” International journal of computer
vision(IJCV), vol. 47, no. 1-3, pp. 7–42, 2002.

[19] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black, “A naturalistic open source movie for
optical flow evaluation,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). Springer,
2012, pp. 611–625.

[20] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided im-
age filtering,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV). Springer, 2010, pp.
1–14.

[21] Liqin Huang, Jianjia Zhang, Yifan Zuo, and Qiang Wu,
“Pyramid-structured depth map super-resolution based
on deep dense-residual network,” IEEE Signal Process-
ing Letters, vol. 26, no. 12, pp. 1723–1727, 2019.

[22] Yifan Zuo, Yuming Fang, Yong Yang, Xiwu Shang,
and Bin Wang, “Residual dense network for intensity-
guided depth map enhancement,” Information Sciences,
vol. 495, pp. 52–64, 2019.

[23] Yifan Zuo, Qiang Wu, Yuming Fang, Ping An, Liqin
Huang, and Zhifeng Chen, “Multi-scale frequency re-
construction for guided depth map super-resolution via
deep residual network,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 2, pp.
297–306, 2019.

6

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on January 10,2023 at 05:25:23 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T23:16:31-0400
	Preflight Ticket Signature




