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Abstract—The generation paradigm of diffusion model (DM)
inspires numerous works to approach the image denoising prob-
lem iteratively. However, DM-based image denoising methods
typically require long serial sampling chains, resulting in sub-
stantial sampling time and computation. To address this issue, we
propose a Noisy-Residual Continuous Diffusion Model (RCDM).
It constructs a path between clean and noisy images by shifting
their noisy residual during forward process, which significantly
shortens diffusion distance. To approximate the path, Noisy
Residual Tracer Network (NRTNet) is adopted to estimate the
derivative of each point along the path. For further acceleration,
clean images are iteratively sampled from noisy images in the
reverse process, where the sampling intervals are learnable and
skippable. Moreover, we devise a two-stage training strategy
to minimize the curvature of the learned path. Experimental
results demonstrate that the proposed method achieves superior
performance with fewer sampling steps in real image denoising.

Index Terms—image denoising, diffusion model, sampling ac-
celeration

I. INTRODUCTION

Image denoising aims to recover clean images from dis-
torted ones corrupted by different types of noise, which is
ill-posed and a challenging task. Image denoising holds prac-
tical significance in various real-life scenarios, spanning from
medical imaging to surveillance systems, which is attributed
to the enhancement of image representation and the improved
accuracy of visual analysis [1]. Consequently, image denoising
attracts considerable attention due to its diverse applications
and the demand for high-quality images.

The deep learning methods based on convolutional neural
networks (CNNs) [2]–[4] have been the prevailing streaming
in the field of image denoising. These approaches leverage
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(a) Denoising diffusion probabilistic model (DDPM)

(b) Denoising diffusion implicit model (DDIM)

(c) Noisy-Residual Continuous Diffusion Model (RCDM)

Fig. 1: (a) DDPM defines discrete Markov chain between clean
images and Gaussian noises. (b) DDIM designs discrete non-
Markov chain in the reverse process between the clean images
and the Gaussian noises. (c) RCDM constructs continuous
forward process and skippable reverse process between the
clean image and the corresponding noisy.

the powerful representation learning capabilities of CNNs,
allowing them to capture complex patterns and structures.
Nevertheless, the limited receptive field prevents the network
from extracting global information, which is crucial in image
denoising. To address this limitation, various researchers make
efforts to broaden the receptive field, employing techniques
such as pooling [5] and deformable convolution [6], etc.
Furthermore, the convolutional kernel, utilizing a mechanism
of parameter sharing, lacks the adaptability to fuse spatial
features in an optimal manner. Therefore, some studies also
introduce kinds of attention mechanisms [7], [8] to focus on
important regions and learnable kernel bases to model different
local structures [9].

Compared to CNNs, Transformer [10], [11] possesses the
capability to capture global information via the self-attention
(SA) mechanism, rendering them successful in various visual
tasks, including image denoising. However, the advantages in



long-range dependency modeling brought by SA come at the
cost of increased computational overhead. Hence, it’s desirable
to explore a trade-off between performance and computational
efficiency. Some solutions, such as sparse attention [12],
window-based attention [13], and applying SA across the
channel dimension [14], etc., are proposed to reduce the
computational complexity and enhance the feasibility of Trans-
former in image denoising. Additionally, amount of methods
combine CNNs and Transformer to aggregate local and global
features, resulting in significant improvements [15], [16].

Building on the advancements achieved by CNNs and
Transformers in the realm of image denoising, another note-
worthy approach that recently captured significant attention
is diffusion models (DMs). The inherent ability of DMs to
iteratively generate high-quality and realistic samples from
Gaussian noises presents a distinctive path for image restora-
tion [17]. It consists of two processes, i.e., the forward process
and the reverse process. In the reverse process of most DMs,
Gaussian noises gradually undergo denoising to sample the
photo-realistic images. Given that the objective of image
denoising is to recover clean images from noisy ones, it
coincides with the reverse process. Consequently, it’s natural
and rational to apply the diffusion model to image denoising.

Despite the considerable success of DMs in image genera-
tion, there exists a necessity for several modifications to tailor
DMs to image denoising better. As illustrated in Fig.1, we
propose a noisy-residual continuous diffusion model (RCDM)
based on Ordinary Differential Equation (ODE) rather than
Stochastic Differential Equations (SDE). The intuition behind
this is to eliminate randomness, establishing a straightforward
and deterministic path between the clean and noisy images.
Meanwhile, the continuous process enables the sampling time
intervals to be learnable and skippable, thus accelerating the
sampling process. Specifically, the forward process initiates
from the clean images and incrementally shifts to the noisy
images by incorporating noisy residuals rather than Gaus-
sian noises. In the process of sampling a clean image, we
employ the Noisy Residual Tracer Network (NRTNet) to
predict the derivative, differing from the noise or clean image
typically predicted by previous DMs (such as DDPM [18]
and DDIM [19] in Fig.1). Furthermore, we devise a two-
stage training strategy comprising the prediction training stage
and the fine training stage. Among them, the former guides
the network to approximate the deterministic denoising path
at a coarse granularity, while the latter traverses the entire
generative process to refine the sampled image directly, mini-
mizing the curvature of the learned path. Experimental results
show that our method achieves superior performance with
fewer sampling time steps. The main contributions are listed
as follows:

• We devise a noisy-residual continuous diffusion model
(RCDM) for image denoising. It consists of a forward
process that shifts in the noisy residual space and a non-
Markov reverse process, achieving efficient denoising.

• We design a learnable continuous sampling schema, en-

abling adaptive removal of noise. It eliminates most noise
in the early steps and concentrates on the hard-to-remove
noise in the later sampling steps.

• We propose a two-stage training strategy involving the
derivative prediction and the rectification of the cumula-
tive error to make the curved path to be straighter, gaining
the superior denoising performance.

II. METHODOLOGY

In this section, we present a noisy-residual continuous
diffusion model (RCDM) tailored for image denoising. We
will provide a detailed description of the proposed RCDM, as
well as the training and sampling strategies employed.

A. Overview

RCDM consists of a forward process and a reverse process,
along with a transformer-based denoising network named
Noisy Residual Tracer Network (NRTNet). In the forward
process, the noisy residual between clean image x0 and noisy
image x1 is incrementally added to the clean one, yielding
intermediate noisy images xt. It serves as the input of NRTNet,
as shown in Fig. 2. To be specific, NRTNet first utilizes a
convolution with the kernel size of 3 × 3 to extract shallow
features Fs ∈ RH×W×C , where H × W denotes the spatial
dimension and C is the number of channels. Subsequently,
Fs is hierarchically refined by walking past the stacked noisy
residual differentiators (NRDs), arranged akin U-shape. NRD
is designed to capture long-range correlations within the input
Fin along the channel dimension and generate output Fout.
The time embedding module is incorporated into NRD, aiming
to encode time step t to provide the prior of noise intensity.
Besides, the skip connection bridges the features at the same
level in the encoder and decoder to assist the recovery. Finally,
fine details are further enriched by a 3×3 convolution layer for
prediction of the derivative fθ located at xt. In the reverse pro-
cess, the residual-related noises are iteratively removed from
the noisy image with specified time intervals and predicted
derivative by NRTNet, gaining denoised samples.

B. Forward and Reverse Process

Forward process. Residual-related noise is gradually in-
troduced into the clean image, finally obtaining the noisy
counterpart. In the noisy-residual continuous diffusion model,
the intermediate noisy image xt indexed by a continuous time
t [21] is defined as follows:

xt = xt−dt + v(xt−dt, t− dt)dt, t ∈ (0, 1) (1)

where v(xt−dt, t − dt) = x1 − x0 = xt−dt−x0

t−dt represents
the speed of xt−dt as it travels to xt, possessing the same
value as the residual. Mathematically, it can be viewed as the
derivative at xt−dt. It is worth mentioning that the forward
process terminates with the corresponding noisy image rather
than a pure Gaussian noise, which is unnecessary for image
denoising. The transition distribution is formulated based on
the derivative as follows:
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Fig. 2: The architecture of the Noisy Residual Tracer Network (NRTNet) is composed of stacked noise residual differentiators
(NRD) akin U-shape [20]. The time embedding module is incorporated into the NRD block to provide prior of noise intensity.
The whole network is optimized by predicting the residual-related derivative to approximate the straightforward path from x1

to x0.

q(xt|xt−dt) = N (xt;xt−dt + v(xt−dt, t− dt)dt, β(t)I),
t ∈ [0, 1] (2)

where N (·) denotes the Gaussian distribution. To establish
a straightforward and deterministic path from xt−dt to xt,
the variance of the random noise in q(xt|xt−dt) is set to 0,
i.e., β(t) = 0. The marginal distribution at arbitrary time t is
formulated as:

q(xt|x0) = N (xt;x0 +

∫ t

0

v(xt, t)dt,

∫ t

0

β(t)dtI),

t ∈ [0, 1] (3)

where the coefficient of random noise
∫ t

0
β(t)dt = 0 in the

proposed method. By constructing such forward process, we
establish a shorter path between x0 and x1 compared to
previous diffusion based methods [18], [19], thereby effec-
tively decreasing the cost of diffusing and sampling. Given
the definite forward diffusion process of noisy residual, the
noise in distorted image can be iteratively removed in reverse
sampling.
Reverse process. We define a learnable and continuous gen-
erative process to estimate the posterior distribution pθ(x0:1).
The inverse transition kernel, represented by pθ(xt−dt|xt),
leverages knowledge from q(xt−dt|xt, x0, x1). Intuitively,
given a noisy image observation xt, together with the deriva-
tive (or residual) at each step and time interval, RCDM can
sample high-quality denoised images iteratively. The target

distribution q(xt−dt|xt, x0, x1) can be formally represented in
terms of the conditional probability of xt:

q(xt−dt|xt, x0, x1) = N (xt−dt;xt − v(xt, t)dt, β(t)I),
t ∈ [0, 1] (4)

where β(t) = 0. Nevertheless, the value of v(xt, t) is un-
available during sampling. Therefore, the predicted derivative
fθ(xt, t) by NRTNet is opted as a rationable alternative. It
differs from most existing DMs where the neural network
predicts noise or clean images at each time step.

Same as DDIM [19], the reverse process of RCDM is
defined based on non-Markov chain to further accelerate
sampling, and the predicted target distribution is as follows:

pθ(xt−n×dt|xt, x1) = N (xt−dt;xt − nfθ(xt, t)dt, β̃(t)I),
t ∈ [0, 1] , n = 1, 2, 3, ... (5)

where fθ(·) denotes the predicted derivative of NRTNet,
β̃(t) = 0. The parameters of model θ are optimized by :

J (fθ) = Ex0:1∼pθ(x0:1)Lchar(v(xt, t), fθ(xt, t)) (6)

where Lchar(·) denotes the Charbonnier loss.

C. Sampling and Training Strategies

Sampling schema. To accelerate the sampling process, we de-
vise a non-Markov and time-step-learnable sampling schema.
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Fig. 3: (a) The fine training stage. The parameters of NRTNet are further optimized to mitigate the cumulative error and
minimize the curvature of the learned path by traversing the entire sampling process and directly refining the sampled clean
image. (b) The sampling process. The choice of time step during sampling process is adaptive to noise intensity in the image.

Algorithm 1 The Prediction Training Stage

Input: Noisy image x1, original clean image x0, noisy resid-
ual tracer fθ.

1: repeat
2: t ∼ U(0, 1)
3: v(xt, t) = x1 − x0 = xt−x0

t
4: xt = x0 + t× v(xt, t)
5: ∇θLchar(v(xt, t), fθ(xt, t))
6: until converged

Specifically, the sampling process is defined based on a non-
Markov chain, allowing for the selection of arbitrary sampling
step. Typically, only 3− 4 steps are sufficient to yield photo-
realistic samples. Moreover, the continuity of RCDM is de-
termined by a continuous parameter t, enabling the sampling
steps to be learnable and skippable for more effective and
efficient noise removal, which will be explained in detail in
the following training strategy.

Two-stage training strategy. The path between clean images
x0 and noisy images x1 is assumed to be deterministic and
straightforward. Charbonnier loss is employed to constrain the
training of NRTNet. However, following the initial training
of NRTNet, the unsatisfactory estimation of derivative results
in cumulative error during sampling process. To address this
issue, we propose a two-stage training strategy. In the pre-
diction training stage, NRTNet is optimized to approximate
the deterministic denoising path by predicting the derivative,
as presented in Algorithm 1. And the second one, named as
fine training stage, aims to rectify the cumulative error and
minimize the curvature of the learned path. Simultaneously,
it focuses on learning the sampling time step, enabling an
adaptive sampling process. In this phase, RCDM directly
refines the final output of the sampling process under the
supervision of the ground truth x0 to further optimize the
NRTNet, as described in Algorithm 2.

Algorithm 2 The Fine Training Stage

Input: Noisy image x1, pretrained noisy residual tracer fθ,
time steps T .

1: t0 = 0, tT = 1
2: repeat
3: for n = T, ..., 1 do
4: tn−1 is a learnable time variable, tn−1 ∈ [0, 1] if

n > 1 else 0
5: x̂tn−1

= x̂tn − (tn − tn−1)× fθ(x̂tn , tn)
6: end for
7: ∇θLchar(x0, x̂0)
8: until converged

It is noteworthy that the time variable t follows a uniform
distribution over [0, 1], which controls the intensity of noise
added to the clean image. In contrast to most of the previous
discrete diffusion models, NRTNet is trained to predict the
derivatives of intermediate images xt at arbitrary continuous
time step. What’s more, in the fine training stage, RCDM is
capable to dynamically determine the skipped time intervals
based on the specific noise intensity and characteristics of the
image. Ideally, the larger the value of t, the more the network
is expected to efficiently remove the majority of noise, thus
skipping long time intervals and saving more computational
cost. When t tends to be small, it will force the network to
concentrate on removing the imperceptible and tiny noise.

III. PERFORMANCE EVALUATION

A. Experiment Settings

The proposed noisy-residual continuous diffusion model
(RCDM) is implemented using PyTorch. During the prediction
training stage, the cosine annealing is employed to steadily
decrease the learning rate from 3× 10−4 to 1× 10−6. Subse-
quently, NRTNet undergoes further training in the fine training
stage with a learning rate ranging from 1× 10−6 to 1× 10−7.



TABLE I: Quantitative results on real image denoising. The best performance is displayed in bold.

Dataset Method
Convolutional Neural Network Transformer Diffusion Model

DnCNN RIDNet VDN DANet+ CyscleISP MIRNet MPRNet NBNet Uformer SwinIR Restormer C2F-DFT NRTNet
[2] [3] [22] [23] [24] [25] [4] [26] [13] [27] [14] [28] (ours)

SIDD PSNR ↑ 23.66 38.71 39.28 39.47 39.52 39.72 39.71 39.75 39.77 39.77 40.02 39.84 39.89
SSIM ↑ 0.583 0.951 0.956 0.957 0.957 0.959 0.958 0.959 0.959 0.958 0.960 0.960 0.960

DND PSNR ↑ 32.43 39.26 39.38 39.58 39.56 39.88 39.80 39.89 39.96 40.01 40.03 39.95 40.10
SSIM ↑ 0.790 0.953 0.952 0.955 0.956 0.956 0.954 0.955 0.956 0.958 0.956 0.955 0.957

PSNR (dB)/SSIM 26.90/0.7527 34.32/0.9412 34.67/0.9431 34.78/0.9440 34.91/0.9445 34.92/0.9452 35.02/0.9452
DND: 02-19 Noisy CycleISP [24] Uformer [13] MIRNet [25] Restormer [14] MPRNet [4] Ours

PSNR (dB) 18.16 PSNR 30.22 30.25 31.17 31.15 31.26
SIDD: 39-29 Noisy Reference CycleISP [24] DeamNet [29] MPRNet [4] Uformer [13] Ours

Fig. 4: Visual comparisons of real image denoising. Top: Visual results on DND testset. Bottom: Visual results on SIDD
testset.

The (patch size, batch size) is maintained at (1282, 16) through
the entire training process. The two-stage training is conducted
on 2 NVIDIA 3090 GPUs, while sampling is performed on 1
NVIDIA 3090 GPU.

B. Quantitative and Qualitative Evaluation

For real image denoising, RCDM is trained on the SIDD
dataset [30] and evaluated on the SIDD validation set and
DND test set [31]. In comparison to some image denoising
methods based on CNN, Transformer and Diffusion Model,
our approach demonstrates superior performance. As shown
in Table I, NRTNet with RCDM surpasses all CNN-based
methods and most of the Transformer-based algorithms on
SIDD validation set. Notably, the proposed method achieves a
PSNR gain of 0.05 dB over the DM-based denoising method
C2F-DFT [28] on the SIDD validation set. On the DND test
set, NRTNet also attains the highest values for PSNR and
SSIM compared to other methods. For visual results, the most
faithful and realistic denoising results are evident in both two
test sets, as illustrated in Fig. 4.

Furthermore, we conduct experiments on the sampling time
of NRTNet with different sampling schemes. As shown in
Table III, the proposed RCDM has a similar sampling time as
DDIM, while reducing substantial amount of time compared
to DDPM on single image and the whole SIDD validation
set, respectively. Moreover, RCDM achieves the best results
in both PSNR and SSIM.

C. Ablation Study

Effect of two-stage training scheme. We analyze the im-
provements on the proposed two-stage training scheme. In
Table II, the denoising results on DND test set are significantly

improved by adding the fine training stage following the
prediction training stage. Fig. 5 shows the comparisons on
SIDD validation set, it can be observed that promising results
are yielded after the fine training stage, which rectifies the
cumulative error.

TABLE II: Effect of the two-stage training strategy.
Training Scheme PSNR (dB) SSIM

(a) Prediction training (3 sampling steps) 39.63 0.950
(b) Prediction training (1 sampling step) 39.97 0.955

(c) Fine training (3 sampling steps) 40.07 0.956

16.98 dB 32.56 dB 33.11 dB PSNR
Noisy Prediction stage Fine stage Reference

Fig. 5: Visual results of two training stages.

Effect of learnable time intervals. We further investigate the
impact of the learnable time intervals in the fine training stage,
and show the results in Table III. Learnable t can improve the
denoising quality by 0.58 dB gain of PSNR on SIDD test set.
Effect of sampling steps. We study the impact of timesteps in
the fine training stage. Specifically, we change the number of
timesteps from 1 to 5. The results of PSNR and the perception
measurement LPIPS on SIDD test set are shown in Fig. 6. The
consumption of computing resources increases linearly as the
steps grow. Considering the trade-off between the sampling
steps of the diffusion reverse process and computational cost,
we adopt 4 sampling steps in practice.



TABLE III: Sampling time of different methods. *-T: T steps
Sampling Scheme PSNR SSIM Time (s)

DDPM-50 38.28 0.945 3.48/4451.12
DDIM-3 39.30 0.954 0.24 / 309.58
RCDM-3 39.88 0.956 0.23 / 298.75

Fig. 6: Effect of time steps in the fine training stage.

IV. CONCLUSIONS

In this paper, we propose a noisy-residual continuous diffu-
sion model (RCDM) for image denoising. It defines a forward
process that establishes a straightforward and deterministic
path shifted towards noisy images by incrementally incor-
porating noisy residuals into clean images. And the Noisy
Residual Tracer Network (NRTNet) is adopted to predict
the derivative (or residual) of each point along the path. In
this way, the clean images can be iteratively sampled from
the noisy images in the reverse process, where the sampling
intervals are learnable and skippable. Furthermore, we devise
a two-stage training strategy to minimize the curvature of
the learned path in order to denoise more effectively. Under
configuration of the shorter diffusing process and non-Markov
chain-based sampling process, it gains superior performance
with fewer sampling time steps.
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