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Abstract—Most of the existing neural video compression meth-
ods adopt the hybrid coding framework, which only focus on
the motion and residual coding of adjacent frames and ignore
the long-term inter-frame dependency and bit-rate allocation.
To address the shortcoming, we propose a temporal bit-rate
allocation strategy for learned video compression (TLVC). Specif-
ically, Motion-driven Temporal Gate (MTG) is designed to yield
temporal bit-rate coefficient by considering the impact of residual
coding on subsequent motion estimation. Sequentially, Texture-
conditioned Spatial Gate (TSG) is proposed to take the generated
coefficient to guide the residual compression with different bit-
rate. Experimental results demonstrate that TLVC can achieve
effective bit-rate allocation compared with the traditional codec
H.266/VVC (VTM-13.2) of low delay p-frame (LDP) configura-
tion.

Index Terms—Neural video compression, Variable bit-rate
allocation, Energy function

I. INTRODUCTION

Video compression plays a significant role in reducing
the burden of storage and transmission while maintaining
high reconstruction quality [1]–[3]. A series of video coding
standards have emerged to get good performance, such as
H.264/AVC [4], H.265/HEVC [5], and H.266/VVC [6]. They
typically adopt various hand-crafted coding technologies to
remove signal redundancy. And some learning-based video
compression methods [7]–[15] demonstrate the excellent per-
formance. Learning-based methods need to explore the corre-
lation among video frames to reduce temporal redundancy and
achieve bit-rate savings. Most learning-based approaches [16]–
[24] adopt a hybrid coding framework consisting primarily of
motion coding [25]–[27] and residual coding. For instance,
M-LVC [28] introduces multiple reference frames to fully
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Fig. 1. The accuracy and efficiency of subsequent motion coding are directly
determined by the presence of residual compensation in the reference frame.

leverage inter-frame information, achieving a more accurate
motion estimation. ALVC [29] can effectively predict the
target frame from previously compressed frames, further elimi-
nating inter-frame redundancy. These methods utilize the same
codec to eliminate inter-frame redundancy, but they don’t
account for the varying extent of inter-frame information.
In video sequences, the varying extent of inter-frame is not
constant [30], [31], and previous methods solely rely on the
adaptive capability of neural network to resist this situation.
Moreover, there isn’t a suitable temporal inter-frame bit-rate
allocation strategy, and the temporal redundancy still exists
and hinders the rate-distortion performance.

It is challenging to directly assess the bit-rate allocated to
each frame for more effective video compression. We consider
the impact of motion and residual in bit-rate allocation,
and assess the temporal inter-frame importance. As shown
in Fig. 1, it displays two motion coding results x̄r

t+1 and
x̄w
t+1. The reference frame x̂t of x̄r

t+1 uses residual coding.
And the reference frame x̄t of x̄w

t+1 does not use residual
compensation. It can be observed that, in the smoothly moving
part (yellow box), excellent results are solely achieved with
motion coding. However, the absence of residual compensation



leads to the annoying alignment in the part with intense
motion (red box). Therefore, residual coding performance
and corresponding bit-rate allocation may influence on the
subsequent motion estimation. Besides, the residual bit-rate
accounts for a large proportion of video compression. Inter-
frame temporal importance can be regarded as the residual
temporal importance.

In this paper, we propose a temporal bit-rate allocation
strategy for learned video compression (TLVC). It primarily
focuses on the the rational allocation of bit-rate in both tem-
poral and spatial domains. The challenge of bit-rate allocation
in the temporal domain lies in determining the significance
of individual frames. In order to deal with this issue, the
temporal bit-rate coefficient is proposed to express the inter-
frame dependency. Meanwhile, the Motion-driven Temporal
Gate (MTG) is designed to yield the temporal bit-rate coeffi-
cient via the assessment of the residual impact on subsequent
motion estimation. The generated coefficients serve as the
quantitative indicator of temporal importance and are utilized
to guide the residual compression. To combine the coefficients
with the spatial information inherent in residual features,
the Texture-conditioned Spatial Gate (TSG) is designed to
estimate the spatial importance via an energy function [32] in
a multi-scale manner [33]–[35]. TSG further fuses the impor-
tance predicted along spatio-temporal dimensions for variable
residual compression. These modules effectively reduce the
inter-frame redundancy and adaptively allocate the bit-rate.
The proposed TLVC achieves savings of 11.49%, 3.08%,
and 12.96% compared to HM-16.20 [36], ENVC [37], and
ALVC [29] on multiple datasets, respectively. In summary,
our main contributions are listed as follows:

• We propose a temporal bit-rate allocation strategy for
learned video compression (TLVC). It can dynamically
allocate bit-rate for each frame along temporal dimension,
and further reasonably allocate the bit-rate conditioned on
intra-frame information.

• We design a Motion-driven Temporal Gate (MTG) to
assess the inter-frame residual importance with the in-
fluence of residual compensation on subsequent motion
estimation.

• We design a Texture-conditioned Spatial Gate (TSG)
embedded into the hierarchical encoder-decoder. Based
on the temporal importance information, it smoothly
scales the residual features and enables the variable video
compression.

II. METHODOLOGY

A. Overview

In this paper, we propose a temporal bit-rate allocation
strategy for learned video compression (TLVC), as shown in
Fig. 2. In order to achieve rational bit-rate allocation in spatio-
temporal domains, Motion-driven Temporal Gate (MTG) and
Texture-conditioned Spatial Gate (TSG) are additionally in-
corporated into the existing video compression network. MTG

yields temporal bit-rate coefficient and TSG utilizes the gener-
ated coefficients to guide the residual compression at different
bit-rate. The Motion Coding is employed to estimate and
compress the motion vector between the input frame xt and the
reconstructed frame x̂t−1, and aligns the x̂t−1 to the current
frame as x̄t. t is the frame index. Subsequently, MTG utilizes
the aligned frame x̄t and two consecutive frames xt and xt+1

to update the temporal bit-rate coefficient λt−1 to get λt.
Finally, the Residual Coding compresses the residual between
the input frame xt and the aligned frame x̄t for compensation,
generating the reconstructed frame x̂t. TSG is embedded into
the auto-encoder of Residual Coding, enabling it to compress
the residual under the guidance of λt with various bit-rate.

B. Motion-driven Temporal Gate
Residual coding accounts for a significant portion in video

coding, but previous methods [38]–[43] rarely utilize the inter-
frame residual correlation to improve coding performance.
Therefore, we utilize the influence of residuals on subsequent
motion to design a Motion-driven Temporal Gate (MTG)
for generating temporal bit-rate coefficients. As shown in
Fig. 2 (c), MTG consists of the parameter-shared motion
estimation and compensation along with a temporal gate [44],
[45]. In order to evaluate the impact of the current residual
compensation on the next motion, two consecutive frames xt

and xt+1 together with the motion aligned frame x̄t are input
into MTG for generation of aligned frames x̄w

t+1 and x̄r
t+1, as

follows:

x̄w
t+1 = MC(x̄t, (ME(xt+1, x̄t))) (1)

x̄r
t+1 = MC(xt, (ME(xt+1, xt))) (2)

where ME and MC represent the operation of motion esti-
mation and compensation. The difference between x̄t and xt

lies in whether there exists residual compensation. Since the
reference frames of x̄w

t+1 and x̄r
t+1 are x̄t and xt, respectively,

thus the difference between x̄w
t+1 and x̄r

t+1 can indicate the
impact of residual on motion estimation from xt to xt+1. To
determine residual bit-rate using the subsequent motions, a
gating mechanism is introduced to update the previous tem-
poral bit-rate coefficient λt−1 to coefficient λt. The difference
between x̄w

t+1 and x̄r
t+1 is extracted by convolution, and it is

transformed into a feature with the same size as λt:

θt = Conv(
[
x̄w
t+1, x̄

r
t+1, rmaskt

]
) (3)

where rmaskt is obtained by mathematical subtraction of
x̄w
t+1 and x̄r

t+1. θt represents the importance of the current
residual to subsequent motion. ‘[·, ·]’ denotes the channel-wise
concatenation operation. θt and λt−1 are used to determine the
residual bit-rate.

gt, zt = Split(Conv([λt−1, θt])) (4)

λt = Sigmoid(gt)⊙ zt (5)



Fig. 2. (a) Overall framework of TLVC. (b) Structural description of the introduced Texture-conditioned Spatial Gate in the residual encoder-decoder. (c)
Illustration of Motion-driven Temporal Gate. (d) Illustration of Texture-conditioned Spatial Gate.

where Split is the operation of split along the channel dimen-
sion. zt and gt respectively represent hidden features and the
attention gate. ‘⊙’ denotes element-wise multiplication.

C. Texture-conditioned Spatial Gate

In order to compress the smooth region and fine structure
at various bit-rate in the spatial domain, Texture-conditioned
Spatial Gate (TSG) is embedded into the residual auto-encoder
in a multi-scale manner. It utilizes the temporal bit-rate coef-
ficients and the intrinsic spatial information of the features to
determine the intra-frame bit-rate allocation. Since the features
ft possess varying spatial scales, an expansion in the channel
dimension of the temporal bit-rate coefficient λt is performed
to align with the current feature size. As shown in Fig. 2 (d),
TSG first calculates the energy ei,jt of each element in the
input feature using the energy function [32]. Specifically, it
estimates the attention weight of each element by calculating
the mean µ̂t and variance σ̂t within each channel:

ei,jt =
4(σ̂2

t + β)

(pi,jt − µ̂t)2 + 2σ̂2
t + 2µ̂t

(6)

where pi,jt represents the value of the element at position (i, j),
i ∈ {0, 1, ...,H − 1}, j ∈ {0, 1, ...,W − 1}. H and W are the
height and width of ft respectively. β is a hyper-parameter. A
lower energy value ei,jt indicates greater dissimilarity between

the current neuron and its surrounding neurons, signifying
higher importance. Therefore, the importance of the current
neuron is calculated as follows:

Et = Sigmoid({ 1

ei,jt
|0 ≤ i ≤ H − 1, 0 ≤ j ≤ W − 1}) (7)

where Et groups all ei,j across channel and spatial dimen-
sions, Sigmoid is introduced to restrict large value of Et.

Then, the extended λt and the spatial importance Et are
cross-arranged along the channels and fed into the group
convolution [46] for scaling of spatial importance. Cross-
arrangement aims to preserve the original spatial importance
distribution within the channel, which is unchanged to the
greatest extent. The above process realizes distilling the spatial
importance Et of the current feature with λt to get Eλ

t :

Eλ
t = Cg({(Ek

t , λ
k
t )|0 ≤ k ≤ C}) (8)

where Cg represents group convolution and C is the number
of channel ft. Feature fλ

t is modified by multiplying Eλ
t and

the input features ft as:

fλ
t = Eλ

t ⊙ ft (9)

Through the above process, MTG can smoothly scale the fea-
tures of residuals according to the temporal bit-rate coefficient
generated by TSG.



Fig. 3. PSNR (dB) and MS-SSIM of TLVC on the UVG and the HEVC Class B datasets. The lines with circles represent the learned codecs and triangles
represent the traditional codecs.

TABLE I
BD-RATE (%) COMPARISON RESULTS OF PSNR AND MS-SSIM. THE ANCHOR IS HM-16.20. THE BEST RESULTS ARE IN BOLD.

HM
(LDP)

VTM
(LDP)

DCVC
(NeurIPS’21)

DCVC-TCM
(TMM’21)

ALVC
(ALVC’22)

ENVC
(TIP’23)

TCVC
(TIP’23)

TLVC
(Proposed)

UVG 0/0 -5.37/7.11 12.56/-16.59 -13.89/-34.48 -2.22/-6.54 -22.83/-25.64 2.21/-14.69 -18.84/-36.81

HEVC Class B 0/0 -15.65/-12.50 8.40/-27.27 -10.19/-46.58 -2.10/-27.27 -11.74/-24.06 -2.10/-14.38 -16.29/-48.62

HEVC Class C 0/0 -12.63/-11.14 25.15/-29.43 1.12/-45.94 12.40/-25.17 3.42/-25.18 7.63/-31.56 -4.37/-48.63

HEVC Class D 0/0 -10.50/-3.38 12.19/-39.91 -8.72/-53.97 1.92/-43.33 -4.84/-31.04 -4.69/-40.55 -14.46/-59.00

HEVC Class E 0/0 -18.30/-0.14 32.40/-15.50 3.18/-39.27 -9.54/-49.60 -6.07/-2.24 4.28/-3.48 -12.06/-45.21

Average 0/0 -12.55/-6.85 18.14/-25.74 -5.70/-44.05 0.09/-30.38 -8.41/-21.63 1.47/-22.64 -11.49/-47.06

D. Objective Function

The objective function consists of three losses, the com-
monly used rate-distortion (RD) loss (Lrd) and proposed two
losses, average loss (La) and bias loss (Lb). RD loss Lrd is
formulated as:

Lrd =
1

T

∑
t

(λtd(xt, x̂t) +R(m̂vt) +R(ŷt)) (10)

where d(xt, x̂t) is the distortion between the input video frame
xt and the reconstructed frame x̂t. d(·) refers to mean square
error (MSE) when targeted at PSNR or 1-MS-SSIM [2] when
targeted at MS-SSIM. R(·) is utilized to calculate bit-rate for
representations compression.

Average loss La is proposed to adapt the overall bit-rate to
the user-entered λGOP , as:

La = (

∑
T λ̂t

T
− λGOP )

2 (11)

And, bias loss Lb is proposed to constrain the generation
of temporal bit-rate coefficient based on the inter-frame de-

pendency and motion complexity instead of fixed bit-rate
allocation, as:

Lb =
∑
T

(λ̂t − utλGOP )
2 (12)

where ut increases with the rise of t.
Finally, the loss function of TLVC is formulated:

L = Lrd + w1La + w2Lb (13)

where w1 and w2 represent the weights of La and Lb,
respectively.

III. EXPERIMENTS

A. Experimental Settings
Due to the proposed method being able to adapt to different

bit-rate variations, we employ the commonly used Vimeo-90K
septuplet dataset [2] to train only 2 models for MSE and MS-
SSIM, respectively. The AdamW [47] optimizer is used with a
batch size of 4. HEVC sequences [5] and UVG [48] are used to
evaluate the compression performance. For a fair comparison,
all experiments are implemented on 2 NVIDIA GeForce RTX
3090 GPUs with Intel(R) Xeon(R) Gold 6226R CPUs.
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Fig. 4. Coding performance of TLVC and DCVC-TCM for the HEVC Class
B BasketballDrive.

B. Quantitative and Qualitative Evaluation

We conduct an RD curve comparison with traditional
codecs, such as HM-16.20 [36] and VTM-13.2 [49], in LDP
configuration and other state-of-the-art learned codecs [17],
[28], [29], [37], [50]–[52], shown as Fig. 3. TLVC exhibits
significant superiority in terms of PSNR and MS-SSIM RD
curves on the UVG and HEVC Class B datasets compared
with other algorithms. Additionally, we compare the BD-rate
(%) of VCEG-M33 [53] for PSNR and MS-SSIM models in
Tab. I, the anchor is HM-16.20. TLVC achieves an average
5.7% bit-rate reduction on the evaluation datasets compared
to DCVC-TCM [50]. Specifically, it is noted that TLVC gets
a 16.29% bit-rate reduction compared with HM-16.20 [36] on
the HEVC Class B dataset, verifying the generalization on
high-resolution videos.

To validate the temporal bit-rate allocation effectiveness
of TLVC, we visualize the consecutive inter-frame coding
performance of TLVC and DCVC-TCM on the HEVC Class
B BasketballDrive sequence (86th to 94th frames), as shown
in Fig. 4. It indicates that DCVC-TCM uses the same bit-rate
for all frames, while TLVC can reasonably allocate temporal
bit-rate based on the inter-frame features, achieving better
compression performance.

The qualitative comparison results of HEVC Class D dataset
are given in Fig. 5. HM-16.20 [36] and VTM-13.2 [49], these
traditional methods lose some texture details on the pants.
TLVC achieves visually pleasing texture reconstruction quality
compared to DCVC-TCM [50] with a similar bit-rate.

C. Ablation Study

To verify the effectiveness of TSG and MTG in TLVC,
we separately ablate these two modules in Table II. Model B
utilizes TSG with uniform temporal information without MTG.
Compared to Model A, Model B successfully saves 3.03%

HEVC Class D BasketballPass Ground Truth (PSNR/Bpp) DCVC-TCM (33.60/0.056)

HM (32.30/0.053) TLVC (33.75/0.053)VTM (32.80/0.052)

Fig. 5. Qualitative comparison on HEVC Class D BasketballPass dataset.

bit-rate and indicates the effective guidance of TSG on bit-
rate allocation using spatial importance. Furthermore, Model C
saves 5.91% of the bit-rate and achieves further improvement.
It suggests that the temporal information inferred by MTG
allows for a more rational inter-frame bit-rate allocation.

TABLE II
ABLATION STUDY RESULTS.

Models TSG MTG BD-Rate Params

A 0.0% 10.71M

B ✓ -3.03% 13.23M

C ✓ ✓ -5.91% 14.80M

IV. CONCLUSION

In this paper, we propose a temporal bit-rate allocation
strategy for learned video compression, called TLVC. The
Motion-driven Temporal Gate (MTG) and Texture-conditioned
Spatial Gate (TSG) are incorporated into learning-based video
compression framework. MTG estimates the temporal bit-rate
coefficient based on the influence of residual compensation
on subsequent motion estimation and can dynamically allocate
bit-rate for residual. Concurrently, TSG combines the inherent
priors of features in the spatial dimension and the coeffi-
cients generated by MTG to better guide the residual coding.
Experimental results demonstrate that TLVC maximizes the
utilization of both temporal and spatial information within
the video sequence and greatly saves the storage space for
effective compression.
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