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Abstract—Currently, video transmission serves not only the
Human Visual System (HVS) for viewing but also machine
perception for analysis. However, existing codecs are primarily
optimized for pixel-domain and HVS-perception metrics rather
than the needs of machine vision tasks. To address this issue,
we propose a Compression Distortion Representation Embedding
(CDRE) framework, which extracts machine-perception-related
distortion representation and embeds it into downstream models,
addressing the information lost during compression and improv-
ing task performance. Specifically, to better analyze the machine-
perception-related distortion, we design a compression-sensitive
extractor that identifies compression degradation in the feature
domain. For efficient transmission, a lightweight distortion codec
is introduced to compress the distortion information into a
compact representation. Subsequently, the representation is pro-
gressively embedded into the downstream model, enabling it to be
better informed about compression degradation and enhancing
performance. Experiments across various codecs and downstream
tasks demonstrate that our framework can effectively boost the
rate-task performance of existing codecs with minimal overhead
in terms of bitrate, execution time, and number of parame-
ters. Our codes and supplementary materials are released in
https://github.com/Ws-Syx/CDRE/.

Index Terms—Distortion Representation Embedding, Video
Compression, Video Coding for Machines

I. INTRODUCTION

Digital video plays a significant role in our daily lives,
accounting for a large proportion of data traffic. Increasingly,
video transmission serves not only human visual system
(HVS) but also downstream machine vision tasks, such as
surveillance video analysis and facial recognition. However,
most existing codecs focus on pixel-domain and HVS-related
metrics [1]–[5] and introduce distortions that harm the ac-
curacy of these downstream tasks, thereby damaging overall
rate-task performance. This issue is regarded as a challenge
within the field of Video Coding for Machines (VCM).

To address the performance degradation in machine vision
tasks caused by compression distortion, a straightforward
approach is restoring frames for downstream machine per-
ception with a restoration model [6]–[8]. Another simple yet
effective solution is to optimize the machine vision model on
compressed datasets, which makes the model better handle
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Fig. 1. (a) Overview of our proposed CDRE framework, which extracts,
compresses, transmits, and embeds machine-perception-related distortion rep-
resentations. It helps the downstream model be aware of specific distortions
in the input data, improving task accuracy. (b) Visualization of compact
and binary representation of machine-perception-related distortion. Detection
accuracy increases after distortion representation embedding.

distorted inputs. However, these methods only generalize com-
mon distortion patterns and struggle to precisely capture the
specific distortion encountered by each input frame. Moreover,
introducing additional bitstreams has proven effective, such
as maintaining semantic consistency between compressed and
original images [9], [10] and enhancing edge details [11].
However, a significant burden is introduced due to the increase
in parameters and execution time.

Inspired by prompt learning [12], we reinterpret the prompt
as the compression distortion information of the current input,
represented through an auxiliary bitstream. The lightweight
Compression Distortion Representation Embedding (CDRE)
framework is proposed to further improve the rate-task perfor-
mance of existing codecs without introducing significant com-
putational and bitrate overhead. This framework detects and
compresses compression-induced distortion and fuses it into
the machine perception process. Due to the down-sampling
and extraction in the backbone of machine perception mod-
els, pixel-domain texture and HVS-related details are often
diminished, making pixel-domain and HVS-related quality less
relevant to downstream performance. Instead of focusing on
improving the quality of compressed frames, our approach
embeds distortion information directly into the downstream
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Fig. 2. The process of distortion representation extraction and compression at the encoder side. C denotes channel-wise concatenation, Q denotes binary
quantization, and ×|+ denotes linear modulation operations. Both the compressed image and the original image are input into the compression-sensitive
extractor, yielding multi-level features F o

1,2,3 and F c
1,2,3 to identify distortions in the feature domain. Subsequently, under the modulation of the aforementioned

features, the distortion encoder extracts and compresses the distortions into a compact representation, which is then quantized.

inference process. By effectively incorporating distortion in-
formation in the feature domain, downstream models achieves
better performance, as illustrated in Fig. 1.

In particular, a compression-sensitive extractor is introduced
to identify compression degradation and mining machine-
perception-related distortions in the feature domain. To effec-
tively transmit the distortion information to the decoder side
without putting extra burden on the encoder side, we employ
a lightweight distortion codec to compress and quantize the
distortion into a binary representation. After transmission, the
representation is gradually decoded and embedded at multiple
scales into the backbone of the downstream model by a
Distortion Representation Embedding Module, enabling it to
perform inference with prior knowledge of the current com-
pression distortion. The effectiveness of the CDRE framework
is validated on various existing codecs, including both standard
and neural-based codecs. Experimental results indicate that our
CDRE effectively enhances rate-task performance in object
detection, semantic segmentation, and video instance seg-
mentation. Additionally, only minimal overhead is introduced
by CDRE in terms of bitrate, execution time, and number
of parameters, making it suitable for scenarios with limited
encoder-side resources.

Our contributions are summarized as follows:

• We propose a lightweight Compression Distortion Rep-
resentation Embedding (CDRE) framework, which en-
hances rate-task performance in VCM scenarios by ex-
tracting and embedding machine-perception-related dis-
tortion representation in the feature domain.

• We introduce a compression-sensitive extractor for an-
alyzing the feature-domain distortion and a lightweight
distortion codec to compress the distortion representation
with minimal computation and bitrate overhead.

• We design a multi-scale distortion representation embed-
ding module to progressively integrate distortion infor-
mation into downstream models, effectively utilizing this
information as a prior during the inference process.

II. METHOD

A. Framework Overview

The pipeline of the CDRE framework is shown in Fig. 1 (b).
It contains three main processes: video compression by ex-
isting codecs, distortion representation extraction and com-
pression, and distortion representation embedding. Firstly,
videos are compressed, transmitted, and reconstructed through
existing codecs. Once video transmission is completed, the
compression distortion is extracted by a compression-sensitive
extractor and compressed into a compact representation y
using a distortion encoder. Then it is quantized into binary
representation ŷ and transmitted to the decoder side with a
minimal bitstream and computation overhead. On the decoder
side, the representation ŷ is reconstructed and embedded into
the backbone of downstream tasks in a multi-scale manner,
enabling downstream models to better counteract compression
distortions.

B. Distortion Representation Extraction

Existing standard and neural-based codecs typically re-
duce pixel-domain and HVS-perception-related distortion us-
ing metrics such as PSNR, MS-SSIM, and LPIPS [1]–[5], [13].
However, the pixel-domain metric PSNR and the HVS-related
metrics MS-SSIM and LPIPS do not exhibit a strong corre-
lation with machine perception, leading to suboptimal rate-
task performance, as detailed in the supplementary materials.
This issue stems from that the down-sampling and feature
extraction of downstream backbones discard pixel-domain and
HVS-related details, reducing the impact of pixel-domain and
HVS-related quality on task accuracy. While distortions related
to the HVS, such as motion blur and blocking artifacts,
are well-defined, machine-perception distortions lack a clear
definition. To overcome this limitation, we propose investi-
gating machine-perception-related distortions by shifting the
focus from pixel-domain metrics to feature-domain analysis.
Specifically, we defined feature-domain distortion as:
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Fig. 3. Visual example from MS-COCO-2017 dataset. White means a higher
value in the feature map. Since the feature distance between original and
compressed images is amplified at three distinct scales, distortion is more
easily discernible in the feature domain than in the pixel domain.

D = −cosine(F o, F c) (1)

where D denotes machine-perception-related distortion in the
feature domain, and cosine(·) denotes cosine similarity. F o

and F c are original features and compression-distorted fea-
tures mentioned later, respectively.

To effectively perceive distortions in the feature domain,
we introduce a lightweight compression-sensitive extractor. As
shown in Fig. 2, the extractor contains three simple extraction
blocks, avoiding computational burdens on the encoder side.
As dedicated in Fig. 3, it amplifies the compression degra-
dation in the feature domain between the original and com-
pressed frames, thereby enhancing the focus on areas where
feature distortion occurs during the subsequent extraction and
compression process. Specifically, the original image x and
compressed image x̂ are fed into the extractor separately to
obtain features F o and F c, enabling a hierarchical perception
of distortion, as detailed by the following equations.

F o
i = LeakyReLU(Norm(Conv(F o

i−1))

F c
i = LeakyReLU(Norm(Conv(F c

i−1))
(2)

where i is the layer-index, Conv(·) denotes a convolutional
layer, Norm(·) denotes an Instance Normalization layer, and
LeakyReLU(·) denotes a LeakyReLU activation layer.

C. Distortion Representation Compression

To reduce the bitrate of transmitting distortion represen-
tation to downstream processes, we employ a VAE-like net-
work [14] for distortion representation compression. It takes
the original image x and compressed image x̂ as input and
considers features F o and F c as compression condition. The
compression process is dedicated to the following equation.

Fd = D(Q(E(x, x̂|F o, F c))) (3)

where Fd is reconstructed distortion feature, Q(·) denotes
binary quantization mentioned later, E(·) and D(·) denote
distortion encoder and decoder, respectively.

The distortion encoder down-samples the distortion infor-
mation and squeezes it to a compact representation y with
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Fig. 4. The process of distortion representation reconstruction and embedding
at the decoder side. The representation is reconstructed by the distortion
decoder. Then it is transferred and embedded into the backbone of the
downstream model for better performance. The structure of the distortion
decoder and distortion transformation module are detailed in supplementary
materials.

lower channel and spatial dimensions. To better focus on the
regions that are severely distorted and beneficial for down-
stream machine perception, features F o and F c are used for
linear modulation during distortion representation encoding,
as shown in equation 4.

αi = Conv(F o
i , F

c
i ), βi = Conv(F o

i , F
c
i )

F ′
i = αi × Fi + βi

(4)

where αi and βi are i-th scaling factor and shifting factor. Fi

is the output feature of i-th compression block in distortion
encoder and F ′

i is distortion-modulated feature.
Similar to the distortion encoder, the decoder contains con-

volutional layers for up-sampling and restoring the distortion
representation. Notably, for CNN-based downstream back-
bones, the decoder reconstructs the binary representation ŷ to
the original spatial dimensions. In contrast, for Transformer-
based backbones, the decoder reconstructs ŷ to match the
channel dimension of tokens in the downstream backbone.
Details of the decoder are in supplementary materials.

For lower bitrate consumption, the compact representation y
is quantized. Existing neural-based codecs typically quantize
the floating-point matrix into integers and then use entropy
models for entropy coding [1], [3], [5], [15]. However, entropy
models introduce heavy computation overhead and require ex-
tensive iterations for training. Instead, we introduce a simpler
method. The value range of the compact representation is re-
scaled to between 0 and 1 by the Sigmoid function. Then the
existing quantization is simplified to binary quantization, as
shown in Equation 5.

ŷ = ⌊Sigmoid(y)⌉ (5)

where y and ŷ are compact representation and binary represen-
tation of distortion, respectively. ⌊·⌉ denotes round opeartion.

D. Distortion Representation Embedding

Inspired by prompt learning [12], we embed distortion
features into the backbone of the downstream task model.



This integration allows the model to remain aware of distortion
information in the current input, enhancing its performance on
downstream tasks. To fully utilize the distortion information,
the distortion feature Fd is further transformed into d1,2,3,4 and
embedded at four distinct scales, as shown in Fig. 4. Notably,
the module ensures that the dimensions of the output feature
d1,2,3,4 align with each stage in the downstream backbone.

The distortion representation embedding operation inte-
grates distortion information with the inference process. Given
that CNN and Transformers are the most widely used back-
bones in machine vision, especially ResNet [16] and Swin-
transformer [17], we propose two distinct embedding methods.
For the CNN-based backbone, the process of distortion feature
transformation and embedding is described by the following
equation.

di = ReLU(Norm(Conv(di−1)))

f ′
i = fi +CA(SA(fi, di))

(6)

where CA(·) is channel-attention operation, SA(·) is spatial-
attention operation, fi represents i-th intermediate result in
backbone, and f ′

i represents embedded feature.
For the Transformer-based backbone, MLP is used for

distortion feature transformation and cross-attention is used
for distortion representation embedding, as detailed in the
following equation.

di = MLP(di−1)

Qi = fiW
Q,Ki = diW

K , Vi = diW
V

f ′
i = fi + Softmax(QiK

T
i /

√
d)Vi

(7)

where MLP(·) represents MLP with one hidden layer, WQ,
WK and WV represent the linear projections, and d is the
dimension of projected matrices.

More details about distortion representation embedding is
described in supplementary materials.

E. Loss Function
Since the entire framework is designed for downstream

machine perception, its primary optimization target is the
performance of downstream tasks. Additionally, for better min-
ing machine-perception-related distortion information, feature
distance is amplified by cosine similarity. In summary, the loss
function L of the framework is as follows.

L = Ltask + λ

3∑
i=1

(1 + cosine(F o
i , F

c
i )) (8)

where Ltask is downstream task loss and λ is balance weight.

III. EXPERIMENTAL RESULTS

A. Implementation Settings
1) Downstream Machine Vision Tasks: The proposed

VCED framework is validated across three tasks with differ-
ent granularities: video instance segmentation (Mask2Former
[17]), person keypoints detection (Faster R-CNN [18]), and
object detection (Keypoint R-CNN [16]), using YoutubeVIS-
2019 (YTVIS2019) [17] and MS-COCO-2017 [16] datasets.

TABLE I
BD-RATE(%)↓ OF COMPARED METHODS ON DIFFERENT DOWNSTREAM

TASKS. BOLD INDICATES THE BEST RESULT.

Methods Object Video instance Keypoints
detection segmentation detection

Direct test 0.0 0.0 0.0
Head finetune -8.89 -32.54 -6.84
Full finetune -58.53 -38.96 -29.18
PromptIR [21] +11.57 +6.27 -1.39
PromptCIR [22] +3.33 -3.05 -3.86
CascadeNet [6] -14.39 -7.00 -5.18
Ours-FD -21.70 -34.95 -9.83
Ours -66.88 -53.68 -30.34

2) Compression Methods: Seven compression methods are
used. For video compression, we employ standard codecs
H.265/HEVC [13], H.264/AVC [19], and neural-based high-
performance video codecs DCVC [3] and DCVC-DC [1]. For
image compression, we use standard codecs H.265/HEVC-
Intra, H.264/AVC-Intra, JPEG-2000 [20], and neural-based
codec Cheng-2020 [5]. Furthermore, the VCM-related video
codec SMC++ [10] is included in our experiment.

3) Compared Methods: We used two types of comparison
methods. One method involves directly fine-tuning the down-
stream task model on compressed datasets, enabling models to
fit on degraded images and videos. Another approach employs
restoration-based models to improve the quality of compressed
images and videos. Specifically, we choose the “all-in-one”
restoration model PromptIR [21], the compression restoration
model PromptCIR [22], and the recognition-oriented restora-
tion model Cascaded Network (CascadeNet) [6].

4) Training Details: The framework includes codecs, task
models, and CDRE-related modules. Video and image codecs
remain fixed during training. In “Ours,” CDRE-related and task
models are jointly optimized with the default configuration of
downstream models; in “Ours-FD,” downstream models are
frozen while CDRE-related modules are trained for 60k iter-
ations. (More training details are described in supplementary
materials.) Values of λ are 4.0 (video segmentation) and 0.1
(object detection and keypoint detection). More details are
shown in the supplementary materials.

B. Rate-task Perforamnce

The BD-rate (%) metric [1] represents the percentage of
bitrate changing while achieving the same task performance
compared to the anchor. The anchor is established by directly
employing the downstream model on the compressed data.

1) With HVS-oriented Codec: Fig. 5 presents the results
of three tasks across various bitrates and codecs. Our method
significantly enhances rate-task performance with a minimal
increase in bits per pixel (bpp). As shown in Table I, it reduces
the BD-rate by 8.35% (object detection), 14.72% (instance
segmentation), and 1.16% (keypoint detection) while fine-
tuning downstream models. It saves 21.70% (object detec-
tion), 34.95% (instance segmentation), and 9.83% (keypoint
detection) bitrates when downstream models are fixed. Due to
the page limitation, the rate-task curve of keypoint detection
is shown in supplementary materials. Visualization on video
instance segmentation is shown in Fig. 8.



(a)

(b)

Fig. 5. The rate-task performance of (a) object detection and (b) Video instance segmentation across various existing HVS-oriented codecs. “Ours-FD”
represents CDRE modules are optimized but the downstream model is frozen, “Ours” represents CDRE modules and the downstream model are jointly
optimized. The average precision on uncompressed data is 37.3% (object detection) and 51.5% (instance segmentation).

Fig. 6. Rate-task performance of the CDRE framework trained on
H.264/AVC-compressed data but tested on video compressed by H.265/HEVC
and DCVC.

Fig. 7. Rate-task performance of CDRE framework with VCM-related codec
SMC++ on object detection and video instance segmentation.

To valid the transferability of CDRE, it is trained on
H.264/AVC-compressed videos but is tested on videos com-
pressed by H.265/HEVC and DCVC. Fig. 6 shows that CDRE
has strong transferability across different codecs and achieves
the best performance.

2) With VCM-related Codec: The CDRE is also tested
on VCM-related codec SMC++ [10]. As shown in Fig. 7,
the CDRE further reduces the bitrate by 26.70% (object
section) and 12.89% (instance segmentation) with fine-tuning
downstream models. It saves 10.48% and 34.95% bitrates
when downstream models are frozen.

The above experiments demonstrate that the CDRE effec-
tively improves the rate-task performance of existing codecs.
In contrast, training the model on compressed data and
restoration-based methods struggles to achieve satisfactory
overall performance. Notably, image restoration for HVS-
metrics (PromptIR and PromptCIR) offers few benefits to
downstream task performance.

Compressed frame Direct test Full finetune Ours

PSNR=31.6dB

PSNR=37.5dB

Fig. 8. Visualization of video instance segmentation. The above frames are
compressed by H.264/AVC with crf = 35. Our proposed CDRE framework
achieves better results after lossy compression.

TABLE II
ABLATION STUDY ON COMPRESSION-SENSITIVE EXTRACTOR. THE

ANCHOR OF BITRATE IS OURS.
Multi-scale Cosine Similarity Modulation Bitrate increase (%)
! % ! +5.77
% ! ! +5.13
% % ! +8.14
! ! % +3.71

C. Overhead Analysis

The proposed CDRE framework is lightweight. The CNN-
based version of the CDRE contains 1.9M parameters, while
the Transformer-based version introduces 3.7M parameters.
Notably, both versions share the same structure on the encoder
side. The encoder part consists of only 18K parameters. For
a 720P frame, the CDRE incurs only an additional 6 ms of
computation time on NVIDIA RTX 3090. For 720P 30fps
video, the additional distortion information bitstream requires
about 20KBps, allowing for more bitrate savings of video
streams while maintaining machine perception performance.

The MACs per pixel for each component are 0.89K on the
encoder side, 0.33K for the Transformer-version decoder, and
1.61K for the CNN-version decoder. The MACs per pixel of
CDRE is less than 2‰ of the video compression process (e.g.,
DCVC-DC [1] has 1.27M, DCVC [3] has 1.09M).



TABLE III
ABLATION STUDY ON PROGRESSIVE DISTORTION REPRESENTATION
TRANSFORMATION AND EMBEDDING. BOLD INDICATES THE BEST

RESULT. THE ANCHOR OF BD-RATE IS DIRECT TEST.
Embedding layers 1 2 3 4

BD-rate (%)↓ -62.66 -62.86 -63.11 -66.88

TABLE IV
ABLATION STUDY ON CHANNELS OF COMPACT REPRESENTATION. BOLD

INDICATES THE BEST RESULT. THE ANCHOR OF BD-RATE IS DIRECT TEST
Channel count 1 3 6 10 16
BD-rate (%)↓ -64.14 -62.53 -66.88 -59.66 -55.49

D. Ablation Study

1) Compression-sensitive Extractor: As shown in Fig. II, to
verify the effectiveness of amplifying distortion in the feature
domain, cosine similarity is removed, leading to a 5.77%
bitrate increase. Moreover, to assess the impact of multi-scale
distortion analysis, we simplified the compression-sensitive
extractor to a single scale, resulting in a 5.13% bitrate increase.
When both ablations were applied, the bitrate increased by
8.14%. Additionally, linear modulation enables the distortion
encoder to better leverage feature distortion, reducing the bi-
trate by 3.71% compared to simple concatenation. All ablation
studies are conducted on object detection.

2) Distortion Representation Embedding: To explore the
effect of progressively distortion representation transformation
and embedding, we change the number of embedded layers. As
shown in Table III, introducing more layers of transformation
and embedding enables the downstream models to better
leverage distortion information.

3) Influence on the Dimension of Compact Representation:
Although transmitting and embedding distortion representation
can improve task accuracy, it also introduces bitrate overhead.
The dimension of compact representation must strike a balance
between accuracy gain and bitrate cost. To address this,
different numbers of channels are tested. As shown in table IV,
the best rate-task performance is achieved with 6 channels.

IV. CONCLUSION

In this paper, we propose a Compression Distortion Rep-
resentation Embedding (CDRE) framework to enhance the
rate-task performance of existing codecs. We develop a
compression-sensitive extractor to amplify and identify dis-
tortion in the feature domain. Moreover, a lightweight dis-
tortion codec is introduced to compress distortion informa-
tion into a compact representation for effective transmission.
Additionally, we introduce a distortion representation em-
bedding module that progressively transforms and embeds
the distortion feature into downstream models, making them
aware of compression degradation of the current input. Our
framework is evaluated on three downstream tasks—object
detection, video instance segmentation, and person keypoint
detection—across seven codecs. Experimental results show
that the proposed CDRE framework significantly improves
the rate-task performance with minimal overhead in terms of
bitrate, execution time, and number of parameters.
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