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Abstract
Image harmonization, aiming to seamlessly blend1

extraneous foreground objects with background2

images, is a promising and challenging task. En-3

suring a synthetic image appears realistic requires4

maintaining consistency in visual characteristics,5

such as texture and style, across global and se-6

mantic regions. In this paper, We approach im-7

age harmonization as a semantic routed style trans-8

fer problem, and propose an image harmoniza-9

tion model by routing semantic similarity explic-10

itly to enhance the consistency of appearance char-11

acteristics. To refine calculate the similarity be-12

tween the composed foreground and background13

instance, we propose an Instance Similarity Eval-14

uation Module(ISEM). To harness analogous se-15

mantic information effectively, we further intro-16

duce Style Transfer Block(STB) to establish fine-17

grained foreground-background semantic correla-18

tion. Our method has achieved excellent experi-19

mental results on existing datasets and our model20

outperforms the state-of-the-art by a margin of 0.4521

dB on iHarmony4 dataset.22

1 Introduction23

Image editing technology is extensively utilized across var-24

ious aspects of our daily lives, encompassing areas such as25

commercial promotion, social sharing, digital entertainment,26

and even the emerging realm of the Metaverse [Kaur et al.,27

2023; Ren and Liu, 2022]. Notably, AIGC [Ho et al., 2020;28

Kim et al., 2022] technology empowers the direct generation29

of a diverse array of images, although many synthetic im-30

ages require subsequent editing to enhance realism. However,31

individuals lacking professional photo-editing expertise may32

find that composited images face challenges in terms of evalu-33

ation credibility, stemming from issues such as inharmonious34

color, texture, or illumination. Consequently, the process35
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Figure 1: Illustration of image harmonization guided by semantic
similarity. The appearance characteristics and semantic similarity of
foreground and background objects are more related. The little girl
could be related to multiple instances in the background. A stronger
influence from the left-side instance leads to a more subdued color
profile, whereas a stronger influence from the right-side instance re-
sults in a more vibrant color profile.

of image harmonization becomes imperative for elevating the 36

overall quality of composite images. 37

Numerous methods have been developed with the objec- 38

tive of harmonizing composite images, addressing the dis- 39

cordance between foreground and background [Cong et al., 40

2020; Liang and Pun, 2022; Ren and Liu, 2022; Zhu et al., 41

2022; Chen et al., 2022; Niu et al., 2023]. Zhu et al. [Zhu et 42

al., 2022] proposed a technique to align the representation of 43

each foreground location with corresponding background el- 44

ements. In a different approach, Tsai et al. [Tsai et al., 2017] 45

introduced an end-to-end learning method for image harmo- 46

nization, primarily focusing on constraining semantic infor- 47



mation learning in the encoder. Cun et al. [Cun and Pun,48

2020] integrated a spatial-separated attention module to com-49

pel the network to learn foreground and background features50

separately, but this approach falls short in ensuring style con-51

sistency between the two components. However, these ex-52

isting methods predominantly emphasize visual style consis-53

tency between foreground and background regions, lacking54

realism derived from instance similarity.55

Based on the human perception process for image harmo-56

nization, the appearance characteristics and semantic similar-57

ity of foreground and background objects are highly relevant.58

As illustrated in Figure 1, the little girl could be related to59

multiple instances in the background, including the man on60

the left and the woman on the right, with varying degrees61

of semantic similarity, When the appearance characteristics62

are influenced by semantic similarity, the resulting harmo-63

nization exhibits distinct characteristics. A stronger influence64

from the left-side instance leads to a more subdued color pro-65

file, whereas a stronger influence from the right-side instance66

results in a more vibrant color profile.67

To alleviate the ambiguity derived from different semantic68

information, we propose an image harmonization model by69

measuring semantic similarity explicitly to enhance the con-70

sistency of appearance characteristics. As the saying goes,71

”who looks like me”. We approach image harmonization as a72

semantic routed style transfer problem, focusing on refining73

the appearance of foreground objects using the style guid-74

ance of the most similar instance. Specifically, an Instance75

Similarity Evaluation Module (ISEM) is designed to compute76

the similarity matrices of components between the composed77

foreground object and the background instances. To harness78

analogous semantic information more effectively, we further79

introduce the Style Transfer Block (STB). On one hand, this80

module is specifically crafted to query the most akin back-81

ground instance. On the other hand, corresponding style char-82

acteristics are seamlessly transferred onto the composed fore-83

ground object, enhancing the overall harmonization process.84

Extensive experiments including human perception experi-85

ments demonstrate the superior performance of our proposed86

method in improving image harmonization.87

In summary, our contributions are given as follows:88

• We design an image harmonization framework by eval-89

uating the instance-similarity90

• We propose an instance similarity evaluation module91

(ISEM), designed to assess the similarity of components92

within both the semantic and stylistic domains of in-93

stances in the foreground and background.94

• We introduce a style transfer block(STB) that captures95

the global style information of the input image and trans-96

fers it to the latent space of the style encoder.97

2 Related Work98

Most early studies on image harmonization aimed to de-99

sign and match low-level color statistical information of fore-100

ground and background, such as color histograms [Xue et101

al., 2012], gradient information [Perez et al., 2023] and im-102

age pyramids [Sunkavalli et al., 2010]. The utilization sce-103

narios of these methods are significantly constrained due104

to limitations in representing high-level features. Paired 105

images and harmonized training data [Tsai et al., 2017; 106

Cong et al., 2020] have been constructed by adjusting the 107

color and illumination of the foreground objects in real im- 108

ages. Based on these datasets, large numbers of image har- 109

monization models based on supervised deep learning mod- 110

els have been proposed and achieved more reliable results 111

using these datasets. DIH [Tsai et al., 2017] and Sofiiuk et 112

al. [Sofiiuk et al., 2021] use semantic information to capture 113

image context, which aids in harmonizing the composite fore- 114

ground. RainNet[Ling et al., 2021] treats the mean and vari- 115

ance of the deep features as appearance information and ad- 116

justs the mean and variance of the foreground to match those 117

of the background. In addition, several endeavors have at- 118

tempted to apply models that have achieved outstanding per- 119

formance in other domains, such as Transformer [Guo et al., 120

2021a] and diffusion models [Lu et al., 2023; Li et al., 2023], 121

to address the task of image harmonization. 122

Furthermore, in the pursuit of context consistency, recent 123

notable works have approached image harmonization as a 124

style transfer problem [Song et al., 2023]. These endeavors 125

aim to precisely transfer the global features of the background 126

onto the composed foreground object. Hao et al. [Hao et al., 127

2020] align the standard deviation of the foreground features 128

with that of the background features, capturing global depen- 129

dencies in the entire image. BargainNet [Cong et al., 2021] 130

uses a domain code extractor to capture background domain 131

information, guiding the foreground’s harmonization. Re- 132

cently, Hang et al. [Hang et al., 2022] has achieved state-of- 133

the-art results by incorporating background and foreground 134

style consistency constraints and dynamically sampling neg- 135

ative examples in a contrastive learning paradigm. These 136

methods leverage network models to learn the relationship 137

between foreground and background feature representations 138

implicitly. 139

In this paper, the background elements that exert a more 140

pronounced influence on the appearance characteristics of 141

foreground objects are concerned. We explicitly extract 142

the semantic relationship between the background and fore- 143

ground elements, and employ this information to guide and 144

inform the image harmonization process. 145

3 Methods 146

3.1 Overall Pipeline 147

The objective of our paper is to maintain consistent appear-
ance characteristics between the foreground and background
of synthetic images. Consequently, forming a substantial
association between the composite foreground instance and
other background instances is vital for crafting harmonious
appearance uniformity. As depicted in Figure 2, we initially
deploy a pre-trained SAM model to divide the synthetic im-
age into a semantic space, with the mask of the foreground
functioning as the model’s prompt. Subsequently, seman-
tic mapping takes place to transform the SAM model’s out-
put into the semantic and location data of the background
instances. We introduce the Instance Similarity Evaluation
Module (ISEM), designed to compute a similarity matrix
between the composite foreground instance and the various



Figure 2: The overall structure of the Image harmonization model. The composite image first acquires instance information based on the
SAM model and estimates the similarity matrix between instances. The harmonization model adopts an encoder-decoder structure. To build
the global relationship between the background and foreground and explicitly utilize the instance similarity matrix, we design the STB and
ISTB modules in the encoding and decoding stages, respectively.

background instances. As part of the harmonization proce-
dure, we utilize a semantic routing technique that utilizes se-
mantic similarity, which incorporates instance location and
a semantic similarity matrix to deliberately adjust the fea-
ture representations within the image. To bolster the influ-
ence of analogous semantics, we employ an encoder-decoder
network architecture. Here, the composite image is subject
to convolutional encoding and then processed through three
strata of the STB encoder. During decoding, to leverage the
semantic similarity matrix in guiding the harmonization pro-
cess, we introduce the Style Transfer Block (STB). This block
shares a similar framework with STB, with a distinction in
the attention mechanism where the Key-value matrix is mod-
ulated by the corresponding scale instance similarity matrix.
This adjustment ensures alignment with semantic similarity
and the subsequent refinement of the harmonization results.
We apply a feature transformation function to ensure feature
dimension consistency following each multiplication process.
The process is formulated as:

K ′ = Reshape(K × S) (1)

V ′ = Reshape(V × S) (2)

Where K and K ′ are the input and output feature map, same148

to V and V ′; S is the same scale instance similarity metrix ob-149

tained from the semantic routing module. Finally, following150

the traversal of a convolutional layer, we can get the harmo-151

nized image.152

3.2 Instance Similarity Evaluation Module153

We employ the pre-trained Segment Anything Model
(SAM) [Kirillov et al., 2023] on a comprehensive dataset
for decomposing the composite image. SAM leverages fore-
ground/background points, bounding boxes, or masks as
prompts to produce segmentation results. It incorporates
three primary components: an image encoder, a prompt en-
coder, and a mask decoder. Utilizing a pre-trained mask self-
encoder based on the Vision Transformer (ViT), SAM pro-

cesses the image into intermediary features while transform-
ing the prompts into embedding tokens. The mask decoder’s
cross-attention mechanism then enables interactions between
image features and prompt embeddings, culminating in the
generation of the mask output. This process can be expressed
as:

Fi = ϕ(Ii) (3)
Fp = ϕprompt(Mask) (4)

M̂ = ϕmdec(Fimg + Fc−mask, [Tout, Tprompt]) (5)

where Fi is the image feature, Fp is the prompt feature, M̂ is 154

the mask output, Tout and Tprompt are the output and prompt 155

embedding tokens, respectively. 156

To derive the semantic representation of each instance, we 157

initially employ the ”full image” mode of SAM for segment- 158

ing all possible instance targets within the image. Subse- 159

quently, we introduce a semantic mapping module that ascer- 160

tains the location and semantic details of instances, drawing 161

from the image embedding produced by the SAM decoder. 162

Specifically, following the SAM decoder, the image em-
bedding undergoes an up-sampling by a factor of 4× via two
transposed convolutional layers. The image tokens, labeled
as Eim and incorporating prompt and output tokens, engage
with the image embedding. The refreshed token embedding
is then directed through three-layer MLP (Multi-Layer Per-
ceptron) [Riedmiller and Lernen, 2014] modules to yield the
instance embedding, represented as Ein. A spatial point-wise
product is performed between the up-scaled image embed-
ding and the instance embedding to predict the position of
the instance, signified as P . This process can be expressed
as:

E′
im = conv.Trans(Eim) (6)
Tu = Attn(Eim, T ) (7)

P = E′
im ·MLP (Tu) (8)

Ein = MLP (Tu) (9)



Furthermore, we use a cross-similarity module to calculate
the similarity between N instances. We use global average
pooling to generate mean query feature F̄ (Ein). Then we
copy it and make it have the same shape with the target feature
Ei

in. The cross similarity map S has the same width/height
with the number of instances detected. Mathematically, the
similarity metric can be expressed as

q = F̄ (Ein) = GAP (F (Ein)) (10)

cos(Ei
in, q) =

Ei
in

T · q
||Ei

in|| · ||q||
(11)

where cos(·) indicates the cosine similarity.163

Figure 3: The illustration of the semantic routing.

3.3 Semantic Routing164

To preserve the pronounced impact of background regions
with analogous semantics on the foreground object, we in-
troduce a semantic routing strategy predicated on assessing
semantic similarity within the semantic space. As depicted
in Figure 3, the semantic similarity matrix coupled with in-
stance location data is employed to identify all feasible in-
stances. By aligning semantic information with spatial loca-
tion indices, we compute the correlation coefficient between
background instances and foreground objects, subsequently
generating a spatial importance map. In detail, the instance
index of the position embedding is denoted as i and the cor-
responding value as Si, it can be formulated as:

Si = Mj , where i = j (12)

where M is the semantic similar value from the semantic sim-165

ilarity matrix.166

Upon finalizing the semantic-location mapping, the seman-167

tic similarity matrix is transformed into an instance similarity168

matrix. This matrix not only embeds instance location infor-169

mation but also encompasses correlation coefficients between170

background instances and foreground targets. To align with171

the Key-Value pairing mechanism in the multi-level STB, the172

similarity matrix is subject to interpolation operations, which173

yield a multi-scale matrix pyramid mirroring the scale struc-174

ture of the STB.175

3.4 Style Transfer Block176

Style Transfer Block(STB) aims to integrate the spatial se-177

mantic and similarity information, which involves applying178

Self-Attention (SA) across channels instead of the spatial di-179

mension. This allows us to compute cross-covariance across180

channels, resulting in the generation of an attention map that 181

implicitly encodes the global context. We further enhance 182

STB by introducing depth-wise convolutions, which empha- 183

size the local context before calculating the feature covari- 184

ance for producing the global attention map. 185

From a layer normalized tensor Y ∈ RH×W×C , our STB
first generates query (Q), key (K) and value (V) projections,
enriched with the local context. It is achieved by apply-
ing 1× 1 convolutions to aggregate pixel-wise cross-channel
context followed by 3 × 3 depth-wise convolutions to en-
code channel-wise spatial context, yielding Q = WQ

d WQ
p Y ,

K = WK
d WK

p Y and V = WV
d WV

p Y . Where W
(·)
p is the

1×1 point-wise convolution and W
(·)
d is the 3×3 depth-wise

convolution. We use bias-free convolutional layers in the net-
work. Next, we reshape query and key projections such that
their dot-product interaction generates a transposed-attention
map A of size RC×C , instead of the huge regular attention
map of size RHW×HW . Overall, the STB process is defined
as:

X̂ = WpAttention(Q̂, K̂, V̂ ) +X, (13)

Attention(Q̂, K̂, V̂ ) = V̂ · Softmax(K̂ · Q̂α) (14)

where X and X̂ are the input and output feature maps; 186

Q,K, V matrices are obtained after reshaping tensors from 187

the original size RH×W×C . Here, α is a learnable scaling 188

parameter to control the magnitude of the dot product of K̂ 189

and Q̂ before applying the softmax function. Similar to the 190

conventional multi-head SA, we divide the number of chan- 191

nels into heads and learn separate attention maps in parallel. 192

To transform style features, the regular feed-forward network 193

(FN) operates on each pixel location separately and identi- 194

cally. It uses two 1×1 convolutions, the first is used to expand 195

the feature channels (usually by factor γ = 4) and the second 196

is to reduce channels back to the original input dimension. A 197

non-linearity is applied in the hidden layer. 198

In this work, we propose two fundamental modifications
in FN to improve representation learning: (1) gating mech-
anism, and (2) depth-wise convolutions. The gating mecha-
nism is formulated as the element-wise product of two paral-
lel paths of linear transformation layers, one of which is ac-
tivated with the GELU non-linearity. We include depth-wise
convolutions to encode information from spatially neighbor-
ing pixel positions, useful for learning local image struc-
ture for effective restoration. Given an input tensor X ∈
RH×W×C , it is formulated as:

X̂ = W 0
p Gating(X) +X (15)

Gating(X) = ϕ(W 1
dW

1
p (LN(X))) ·W 2

dW
2
p (LN(X))

(16)

where (·) denotes element-wise multiplication, ϕ represents 199

the non-linearity, and LN is the layer normalization. Overall, 200

the module controls the information flow through the respec- 201

tive hierarchical levels in our pipeline, thereby allowing each 202

level to focus on the fine details complementary to the other 203

levels. 204
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Figure 4: Comparison with SOTA methods. Our results can obtain the similarity of instances in the background image and harmonize based
on instances with high similarity. Therefore, they are able to better eliminate interference factors in the background.

4 Experiments205

4.1 Datasets206

Our experiments use the iHarmony4 dataset, a publicly avail-207

able synthesized dataset referenced by Cong et al. [Cong208

et al., 2020], which includes four sub-datasets: HCOCO,209

HAdobe5k, HFlickr, and Hday2night. These sub-datasets en-210

compass synthesized composite images, foreground masks211

for these images, and their corresponding real images. We212

employed the same processing method as HDNet [Chen et al.,213

2022] for the dataset. Additionally, to validation the perfor-214

mance of our methods in real-world scenarios, we employed215

100 real-world images from CDTNet [Cong et al., 2022],216

which are processed in the format of the iHarmony4 dataset.217

Objective Evaluation Metrics. We evaluated the per-218

formance of our method using MSE, PSNR, fMSE, as sug-219

gested by [Cong et al., 2020; Ling et al., 2021; Niu et al.,220

2023], in which fMSE means MSE within the foreground221

region. To illustrate performance, we qualitatively compare222

our method with following harmonization methods, includ-223

ing DoveNet [Cong et al., 2020], Intrinsic [Guo et al., 2021b],224

Bargainnet [Cong et al., 2021], RainNet [Ling et al., 2021],225

D-HT [Guo et al., 2021a], Harmonizer [Ke et al., 2022],226

SCS-Co [Hang et al., 2022], CDTNet [Cong et al., 2022],227

HDNet [Chen et al., 2022], GKNet [Shen et al., 2023], and228

LEMaRT [Liu et al., 2023].229

4.2 Implementation Details 230

Our model is trained by AdamW optimizer with β1 = 0.9, 231

β2 = 0.999, and weight decay 1e−4. We train the model for 232

200 epochs with input images resized to 256× 256 and batch 233

size set to 8. The initial learning rate is set to 3e−4 and grad- 234

ually reduced to 1e−6 with the cosine annealing [Loshchilov 235

and Hutter, 2017]. We use PyTorch to implement our models 236

with NVIDIA GeForce RTX 4090. 237

4.3 Comparison with Existing Methods 238

Quantitative comparison Table 1 shows the quantitative re- 239

sults of previous image harmonization methods as well as our 240

method. It is evident that our method surpasses the compar- 241

ative methods across all datasets with the exception of MSE 242

and fMSE on HCOCO. Furthermore, when contrasted with 243

the second-best performing method, ours realizes a substan- 244

tial average enhancement of 0.52dB in PSNR, a 0.55 reduc- 245

tion in MSE, and an improvement of 77.26 in fMSE. 246

Influence of fore-ground ratios Following [Cong et al., 247

2020], we examine the influence of different fore-ground ra- 248

tios on the harmonization models, i.e., 0% to 5%, 5% to 15%, 249

15% to 100%, and overall results. The comparative results 250

of previous methods and our method are tabulated in Table 2. 251

Upon scrutiny, it is evident that our method exhibits superior 252

performance, outperforming all other approaches. 253

Qualitative comparison In Figure 4, Additionally, we pro- 254

vide a qualitative comparison of results on the iHarmony4 255

dataset. It is readily apparent that our method secures a more 256



model venue HCOCO HAdobe5k HFlickr Hday2night All
PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓

Comp - 33.99 69.66 28.48 347.52 28.41 266.05 34.3 110.95 31.76 173.43
Dovenet CVPR’20 35.83 36.72 34.34 52.32 30.21 133.14 35.18 54.05 34.75 52.36
intrinsic CVPR’21 37.21 24.92 36.01 43.02 36.23 105.13 34.03 55.53 35.01 38.71

BargainNet ICME’21 37.03 24.84 39.94 35.34 31.34 97.32 35.67 50.98 35.88 37.82
RainNet CVPR’21 37.08 29.52 36.22 43.35 31.64 110.59 34.83 57.4 36.12 40.29
D-HT ICCV’21 38.33 16.89 36.11 38.53 33.13 75.51 37.1 53.01 37.55 30.3

Harmonizer ECCV’22 38.77 17.34 37.64 21.89 33.63 64.81 37.56 33.14 37.84 24.26
SCS-Co CVPR’22 39.88 13.58 38.29 21.01 34.22 55.83 37.83 41.75 38.75 21.33
CDTNet CVPR’22 39.15 16.25 38.24 20.62 33.55 68.61 37.95 36.72 38.23 23.75
HDNet MM’23 39.49 15.59 38.56 22.67 33.96 63.85 38.11 35.92 38.58 23.42
GKNet ICCV’23 40.32 12.95 39.97 17.84 34.45 57.58 38.47 42.76 39.53 19.90

LEMaRT CVPR’23 41.0 10.1 39.4 18.8 35.3 40.7 38.1 42.3 39.8 16.8
Ours - 40.94 12.15 40.91 14.77 35.79 48.57 39.30 27.00 40.32 17.25

Table 1: Quantitative comparison across four sub-datasets of iHarmony4. Bold and underline indicate the best and second best performance,
respectively.

model 0% ∼ 5% 5% ∼ 15% 15% ∼ 100% Average
MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

Composite 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
DIH 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18

S2AM 13.51 509.41 41.79 454.21 137.12 449.81 48.00 481.79
DoveNet 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96
RainNet 11.66 550.38 32.05 378.69 117.41 389.80 40.29 469.60

BargainNet 10.55 450.33 32.13 359.49 109.23 353.84 37.82 405.23
Intrinsic 9.97 441.02 31.51 363.61 110.22 354.84 38.71 400.29
HDNet 5.95 230.75 20.32 265.31 68.95 318.15 23.42 258.80

ours 4.37 198.47 13.50 155.61 52.55 172.11 17.25 181.54

Table 2: We measure the error of different methods in fore-ground ratio range based on the whole test set. fMSE indicates the mean square
error of the fore-ground region. Top performance are shown in bold.

uniform visual style across the entire composite image, re-257

sulting in a more photorealistic outcome. For example, as258

shown in the second row of Figure 4, the visual style of the259

foreground and the background are quite different, resulting260

in obvious image distortion. The other three methods cannot261

adjust the style of the foreground, especially the overall tone262

and the contrast of lighting and shadows. Unlike them, our263

method produces a more photo-realistic result and is closer to264

the ground-truth real image.265

Overall Inference Time In Table 4, we present the infer-266

ence time, parameter count, and FLOPs required for harmo-267

nizing a single image during testing. our approach does not268

show efficiency advantages, as indicated in the last row of269

Table 4, due to utilizing the pretrained SAM model for in-270

stance information retrieval. Yet, when relying solely on pixel271

domain architecture without ISEM, our model demonstrates272

comparable inference speed, with each step taking 20.4ms273

and a parameter count of 25.28M , as shown in the third row274

of Table 4. In this study, we intentionally sacrificed some275

speed advantages to prioritize the realism of the harmonized276

images. Nonetheless, there is significant potential to enhance277

both the speed and parameter count of the SAM model, a di-278

rection we aim to pursue in future research.279

4.4 Ablation Study280

Effectiveness of each component In this section, we investi-281

gate the effectiveness of each component in our model.282

Figure 5: Ablation study on ISEM and STB. Full model means base-
line with both ISEM and STB

The results of ablating each component are reported in Ta- 283

ble 3. Our ISEM module enables assess the similarity of com- 284

ponents within both the semantic and stylistic domains of in- 285

stances in the foreground and background. In Table 3, we 286

can see that adding ISEM to the baseline brings 0.56 dB and 287

5.12 average performance improvement in terms of PSNR 288

and MSE. 289

The STB effectively learns global style features and ap- 290

plies them to foreground objects. The addition of the STB 291

enhances the overall coherence between foreground objects 292

and background images. However, it also introduces a lim- 293

itation in the form of excessive reliance on the background, 294

which limits the effectiveness of improvement. In Table 3, we 295



Metric HCOCO HAdobe5k HFlickr Hday2night All
PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓

Comp 33.99 69.66 28.48 347.52 28.41 266.05 34.3 110.95 31.76 173.43
Basic 38.65 17.10 36.02 38.42 33.25 75.68 37.76 54.12 37.87 30.10

+ISEM 39.12 16.28 38.14 20.53 33.24 68.42 38.02 36.22 38.33 24.98
+STB 39.62 15.71 38.87 23.88 34.10 65.76 38.11 35.98 38.58 23.86
Total 40.94 12.15 40.91 14.77 35.79 48.57 39.30 27.00 40.32 17.25

Table 3: Ablation study across four sub-datasets of iHarmony4, Top performance are shown in bold

Method Time(ms) Params(M) FLOPs(G)
RainNet 12.06 54.75 3.79
HDNet 15.08 10.41 48.04
CDTNet 10.8 24.36 78.05
Ours w/o ISEM 20.4 25.28 87.7
Ours 160.72 112.3 356.4

Table 4: Quantitative efficiency comparison of different methods.

can see that adding STB to the baseline brings 0.71dB and296

5.24 average performance improvement in terms of PSNR297

and MSE.298

By concurrently incorporating the ISEM and STB mod-299

ules, our method effectively establishes correlations between300

various components of the target object and background in-301

stances, thus enhancing overall coherence. Consequently, the302

improvement is significantly pronounced. In Table 3, we can303

see that adding both ISEM and STB to the baseline brings304

2.45 and 12.85 average performance improvement in terms305

of PSNR and MSE.306

Visual comparison To further illustrate the effectiveness307

of our mothods, we show some output results of ablation ex-308

periments in Figure 5. It can be found that compared with the309

distortion results produced by the module, the full model’s310

results performe more consistent in lighting and color with311

background regions.312

4.5 User Study313

We extend our evaluation by comparing various methods314

using a dataset of 100 real composite images provided by315

CDTNet [Cong et al., 2022]. To gauge the performance316

against competitive baselines, we conduct a user study.317

This study involves the construction of 600 image pairs, in318

which we randomly select two images from each composite319

image and its 3 corresponding harmonized results across the320

100 real composite images. Subsequently, we allocate 60321

pairs for each of the 20 participants, who are tasked with322

viewing one image pair at a time and selecting the image323

they perceive as more harmonious. This process generates a324

total of 1200 pairwise results. Following the methodology325

adopted in GiftNet [Niu et al., 2023], we computed the326

Bradley-Terry(B-T) scores for all methods, as detailed in327

Table 5. Notably, our approach emerges with the highest328

B-T score (which is 0.413) concerning realism, underscoring329

the efficacy of the method proposed in this paper. The330

visualization results pertaining to real composite images are331

presented in Figure 6. Compared to previous methods, our332

results demonstrate enhanced realism, particularly evident333

when similar instances are present in the background, as334

illustrated in the first three rows. Furthermore, when there

Method Composite RainNet HDNet CDTNet Ours
B-T Score -0.972 0.084 0.177 0.298 0.413

Table 5: B-T scores of different methods on 100 real composite im-
ages.

Figure 6: The visualization of different methods on real composite
images.

335

are N(N > 0) related instances in the background, the model 336

constructs an N-dimensional similarity matrix to represent 337

the degree of similarity between instances. These instances 338

affect the foreground through weighted accumulation across 339

the matrix, and the foreground maintains good consistency 340

with the most relevant instances, such as the color of 341

sunflowers in the 3rd row of Figure 6. Furthermore, in the 342

absence of similar instances, the proposed STB and ISTB, 343

which can capture and transfer global color information into 344

the foreground, can maintain overall appearance consistency 345

throughout the image, as illustrated in the 4th row of Figure 6. 346

347

5 Conclusion 348

In this paper, we propose a image harmonization model utiliz- 349

ing instance similarity to maintain consistency uniformity in 350

global and similar regions. We propose an instance similarity 351

evaluation module (ISEM), which can assess the similarity of 352

components within both the semantic and stylistic domains of 353

instances in the foreground and background. We introduce a 354

style transfer block(STB) that captures the global style infor- 355

mation of the input image and transfers it to the latent space of 356

the style encoder. Our method has achieved excellent exper- 357

imental results on existing datasets and has more significant 358

advantages in user visual reality evaluation. 359
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