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Image denoising which aims to restore a high-quality image from the noisy version is one of the most
challenging tasks in the low-level computer vision tasks. In this paper, we propose a multi-stage progres-
sive denoising network (MSPNet) and decompose the denoising task into some sub-tasks to progressively
remove noise. Specifically, MSPNet is composed of three denoising stages. Each stage combines a feature
extraction module (FEM) and a mutual-learning fusion module (MFM). In the feature extraction module,

an encoder-decoder architecture is employed to learn non-local contextualized features, and the channel
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attention blocks (CAB) are utilized to retain the local information of the image. In the mutual-learning
fusion module, the criss-cross attention is introduced to balance the image spatial details and the contex-
tualized information. Compared with the state-of-the-art works, experimental results show that MSPNet
achieves notable improvements on both objective and subjective evaluations.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Image denoising plays an important role in the low-level com-
puter vision tasks, and it has attracted much attention from both
academia and industry. Theoretically, image denoising is a special
case of an inverse problem to restore clean images from noisy
observation. It can be used as a preprocessing step for subsequent
high-level computer vision tasks.

Many traditional denoising methods [1-4], are mainly attribu-
ted to the famous block-matching 3D (BM3D) [1] framework,
which combines the non-local similarity characteristic of natural
images and the sparse representation in the transform domain.
And these methods assume that noise is independent and identi-
cally distributed. However, the strong assumption inevitably leads
to inferior performance in real-world noise.

Recent state-of-the-art methods [5-10] employ convolutional
neural networks (CNNs) to implicitly learn more general priors
by capturing natural image statistics from large-scale data. CNN-
based methods over others primarily attributes to many network
modules and functional units including residual learning (DnCNN
[11], MemNet [12]), attention (RIDNet [13], MIRNet [8]) and dense
connections (RDN [14]). These methods are designed as single-
stage, which lack the flexibility of image denoising. The multi-
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stage networks are widely used in pose-estimation [15,16], action
segmentation [17,18] and image restoration [9,19] and so on. Nev-
ertheless, it is claimed that some architectural bottlenecks limit
the performance of the existing multi-stage frameworks [9]. Either
encoder-decoder structure or single-scale network is only effective
to obtain broad large-scale information, or to maintain the local
information. There are rare architectures to employ both of them.
Zamir et al. [9] considered this problem, but the non-local contex-
tualized information and local details were not well fused. There-
fore, it is very important to fuse the non-local and local
information.

In this paper, image denoising is considered as a process to
gradually learn the degradation function. Thus, we propose a
multi-stage progressive denoising network, named MSPNet. The
denoising processing is decomposed into some sub-tasks to
progressively restore the clean image. In each stage, we design a
parallel structure including a single-scale branch and an encoder-
decoder branch. Considered information fusion demands the
long-term dependency of the image, the criss-cross global atten-
tion [20] based non-local design is introduced to achieve feature
fusion of contextualized information and spatial image details.
Extensive experiments based on several benchmark datasets show
our MSPNet can significantly improve the denoising performance
on both synthetic and real noisy images.

The contributions of this paper are summarized in the following
aspects:
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e We design a multi-stage progressive denoising network and
decompose the whole denoising process into several sub-tasks
to progressively remove noise.

¢ In each denoising stage, we employ a parallel network structure
to simultaneously obtain non-local contextualized information
and image spatial details.

o At the end of each stage, the criss-cross attention based on non-
local design is introduced to fuse the image local details and
non-local contextualized information.

2. Related Work
2.1. Single-stage methods

As widely adopted in denoising networks, single-stage architec-
tures utilize different kinds of functional components to obtain
performance gains. For example, DnCNN was proposed by Zhang
et al. [11], where the residual learning and batch normalization
were utilized to enhance the deep neural network learning and
denoising. Considering the long-term dependence on the images,
an end-to-end memory network based on residual connections
was proposed [12] by Tai et al., where both long-term and short-
term memories were adopted to capture different levels of infor-
mation in noisy images. RIDNet [13] firstly utilized the attention
mechanism for the image denoising task, where the dependence
among channels was employed to remove the real noise. Besides,
RNAN [21] utilized residual non-local attention for high-quality
image restoration. CycleISP [22] employed a channel attention-
based framework that modeled the camera imaging pipeline in for-
ward and reverse directions. For image denoising in a multi-scale
feature space, SADNet [23] built an encoder-decoder architecture
based on a deformable convolution unit to capture multi-scale fea-
tures of the noisy image. MIRNet [8] was a multi-scale residual
architecture and introduced both channel attention and spatial
attention to further improve the performance of real image denois-
ing. Li et al. [24] employed an enhanced encoder-decoder network
to capture the image contextualized information for image
deraining.

2.2. Multi-stage methods

A number of previous works have verified that the multi-stage
network can achieve better performance than the single-stage
counterparts in high-level vision tasks, such as pose estimation
[15,16] and action segmentation [17,18]. For example, Li et al.
[16] proposed the single-stage module design, cross-stage feature
aggregation and coarse-to-fine supervision to improve the denois-
ing performance. farha et al. [17] introduced a multi-stage architec-
ture for the temporal action segmentation task. Recently, the
multi-stage design is also utilized in low-level tasks. For example,
some restoration works based on multi-stage employed a light-
weight sub-network to progressively recover clean images. Ren
et al. [25] presented a progressive ResNet (PRN) to take advantage
of recursive computation. For handling large blur variations across
different spatial locations, Suin et al. [19] proposed an efficient
pixel adaptive and feature attentive design to adaptively remove
motion blur. To balance the spatial details and high-level contextu-
alized information, Zamir et al. [9] proposed a multi-stage architec-
ture to progressively learn restoration functions for the degraded
inputs.

3. Proposed Method

In this section, we first give the whole framework of the
MSPNet. And then we detail the structure of the feature extraction
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module (FEM) and mutual-learning fusion module (MFM) as
follows.

3.1. Network Architecture

The framework of MSPNet is shown in Fig. 1. It contains three
stages to gradually remove the noise. Given a noisy image
y € RG> WxH 1 the basic feature F;of y is extracted by the shallow
layer with a 3 x 3 convolutional layer and a channel attention block
(CAB) in the first denoising stage,

Fy = CAB(W xy), (1)
where CAB represents a channel attention block, W is the convolu-
tion kernel to expand the number of the feature maps.

Every denoising stage includes a feature extraction module
(FEM) and a mutual-learning fusion module (MFM). FEM is a par-
allel combination of encoder-decoder branch and single-scale
branch. The single-scale branch based on channel attention is
employed to capture the local information F¢, The encoder-
decoder branch is utilized to extract rich contextualized features
Fi,

Fi =J3(Fy), 2
1:111 :fé(F1)7

where f; represents the extraction function of single-scale branch,

composed of series of channel attention blocks (CABs). fé represents
the extraction function of encoder-decoder branch.

After obtaining image detail features F¢ and contextualized fea-
tures F] , a mutual-learning fusion module (MFM) is designed to
fuse the two features. The process is represented as,
M; = MFM(F{, F}) 3)
where M, is the output features of MFM.

To achieve the joint training of multiple stages, M; is added to
the second stage by skip connection with the shallow features Fr,

extracted by the first CAB at the second stage. The process is for-
mulated as,

Fy =Fr, + My (4)
where F; is input to the single-scale branch and encoder-decoder
branch to get M,. With the similar operation, the feature Ms is out-
put from MFM in the third stage.

In three stages, the clean image X;,X; and X3 are reconstructed
with features M;, M, and M3 by a 3 x 3 convolutional layer. Thus,
MSPNet can get three clean images with different quality to meet
the different applications.

3.2. Feature Extraction Module (FEM)

The idea behind FEM is that image spatial details and non-local
contextualized information are beneficial for removing the noise in
the denoising process [8]. To extract these rich features, we pro-
pose a parallel architecture including a single-scale branch based
on channel attention and an encoder-decoder branch. Our single-
scale branch is operated on the full-resolution to obtain spatially
precise and local information. Moreover, our encoder-decoder
branch is progressively operated on different resolutions to extract
semantically reliable and non-local information.

! Ci», W and H are respectively the channel number, width, and the height of the
input image y.
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3.2.1. Single-scale branch

In order to learn the spatial details of the image, our single-scale
branch is designed with several stacked channel attention blocks
(CABs). Every channel attention block (CAB) is a single-scale struc-
ture and the size of the feature maps does not change during the
image processing. Besides, some works [8,9] have proven that
the depth of the CNN-based model is highly correlated with its per-
formance, so we employ several CAB modules in our single-scale
branch. Taking the first stage as an example, the spatial image

details F‘f are captured by several stacked CAB modules,
F{ = CABy,(CABy 1 (- CABy (Fy))) (5)

where CAB;,(CAB,,--,CAB,, denote m stacked CAB modules. F; is
the basic feature of input image y achieved by Eq. (1).

The structure of CAB is shown in Fig. 2. The feature f € R&W*H is
input to two convolutional layers with ReLU function to obtain the
feature h. Then, channel attention calculates and analyzes the
weights of local information h. Specifically, the global average
pooling (GAP) is applied to h to get the statistical quantity z. of
the c-th channel of feature h,

zc = GAP(h) =

1 W H
hc(i’j)vc S {Ozlvvc} (6)
H x W;Z]

Jj=

where h(i,j) represents the value of the c-th channel of feature h
with the coordinates (i,j). Hand W represent the spatial dimensions
of h.

Channel statistical quantity z of all channels can be represented
as,
Z:[217ZZ7"'7ZC] (7)
where [,] denotes concatenation operation. Next, the convolutional

operation and the sigmoid activation function are adopted to obtain
channel attention s,

§ = 0(Wa x (6(W1 %2))) (8)
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Fig. 2. The structure of channel attention block(CAB).

where W, and W, represent the convolution operations, ¢ repre-
sents the sigmoid function. § represents the ReLU activation
function.

The output of the CAB, f,; is obtained by element multiplying
operation,

foap=s-h+f

where [-] denotes the element multiplying operation.

9)

3.2.2. Encoder-decoder branch

In order to learn the non-local information of the image, we
introduce a U-shaped encoder-decoder network shown in Fig. 3.
Supposed the input feature with a size of 64 x 64, max pooling
operation with stride 2 is used for down-sampling and the channel
numbers are doubled to reduce the decay of information caused by
the down-sampling operation. The process is represented as,

X}, = MaxPool(x),

! (10)
X = Hia (%), k €{0,1,2,3}
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It is formulated as,
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X X X3 X4 =Yo N1 Y2 y3 Va
g feature map » down-sampling » up-sampling — feature fusion
Fig. 3. The structure of encoder-decoder branch based on U-Net.
where x, denotes the feature map after the k-th down-sampling
.1 denotes the intermediate feature in the (k+ 1)-th
down-sampling operation, Hy,; represents the convolutional opera- A
tion. It is noted that x4 is the low-resolution feature of x, which is \\Q =
the shallow feature F. g SOl
After obtaining the multi-scale features x; (k € {0,1,2,3}) from < ‘l
down-sampling operation, the up-sampling process adopts the N K £
- . . 2 )
deconvolution operation to enlarge the resolution of the features. 5 4.6;_. 7
2
T
Ve =W s g, Pe_1)) K € {1,2,3,4} (11) / I
A%

where [,] represents concatenation. W}, represents the deconvolu-
tion operation in the k'-th up-sampling operation. When k' = 1,y,
equals to x4. In fact, the decoded feature y, is the contextualized
features F{. P( ) represents the padding operation to enlarge the res-
olution of features y,_; and then concatenate two features with dif-
ferent resolutions. Here, four down-sampling and up-sampling
operations are adopted to capture the rich non-local contextualized
information.

3.3. Mutual-Learning Fusion Module (MFM)

In order to fuse the image spatial details F¢ and non-local con-
textualized information F|, we design mutual-learning fusion
module (MFM). MFM utilizes two successive criss-cross attention
(CC-attention) [20] to obtain non-local dependency and avoid the
lack of memory. Fig. 4 is the structure of CC-attention.

Given a feature map I € R&W*# two convolutional layers with a
kernel size of 1 x 1 are used to obtain feature map Q and K respec-
tively. {Q,K} € R“*YWH_ (' is smaller than C for dimension reduc-
tion. The attention map Ae RHW-DxHW) js generated by
affinity and softmax operations. For each position u of Q, the set
wy € RHW-1xC i5 obtained from K which is in the same row or
column as u. w,; represents the i-th element of w,, the affinity
operation is represented as,

du.i = Quwg‘i (12)

H+W=1)x(HxW) ' and denotes the cor-

where d,; is an element of D € R
relation between feature Q, and wy;.

Another convolutional layer with a kernel size of 1 x 1 is used
to obtain V e R&YW*H, For each position u of V, we can obtain the
set ¢ € RAW-DxEHW) from V with the same row or column as posi-
tion u. The output of the CC-attention module is obtained by an
aggregation operation,
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Fig. 4. The structure of criss-cross attention.

W+4+H-1

L= Auyi+l (13)
i=0

where I, is a feature vector of I' € R™"W*# A, ; is the scalar value of A
with coordination (u,i). Obviously, the long-term dependency of all
pixels can be captured by stacking some CC-attention modules [20].

3.4. Loss function
For end to end training, we utilize the loss function L to measure

the difference between the denoised image x; (j € {1,2,3}) and
ground-truth xg, which is formulated as follows,

3
L= Lenar (%, Xgt) (14)
=1

where L¢,,, denotes the Charbonnier loss of each denoising stage
shown as follows,

Lenar = £/ |1%, Xee || + €2, € {1,2,3}

where e is a constant.

(15)

4. Experiments

In this section, we demonstrate the effectiveness of our method
on both synthetic datasets and real noisy datasets.

4.1. Dataset and Evaluation Metrics

For the denoising of synthetic noisy images, we adopt DIV2K
[26] which contains 800 images with 2K resolution as our training
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dataset. Different levels of AWGN are added to the clean images.
For the training of real noisy images, we use the SIDD [27] Medium
dataset. For test datasets, we adopt BSD68 and Kodak24 in the syn-
thetic noise situation, and SIDD [27] validation dataset and DnD
[28] dataset in the real noise situation. PSNR, RMSE and SSIM are
employed to evaluate the performance. The best and second-best
results are highlighted and underlined respectively in the follow-
ing experiments.

4.2. Experiment Setup

We randomly rotate and flip the image horizontally and verti-
cally for data augmentation. In each training batch, 16 patches
with the size of 64 x 64 are input to the model in the synthetic
image denoising, and 16 patches with the size of 128 x 128 are
used for real image denoising. We train our model by the ADAM

optimizer [29] with g, =0.9,8, =0.999 and € = 10°%, For syn-
thetic image denoising, The initial learning rate is 1 x 10 and
then halved after 1 x 10° iterations. And for real image denoising,
the initial learning rate is 2 x 10~ and is decreased to 1 x 107° in
the cosine annealing strategy [30]. All experiments are imple-
mented in the PyTorch framework and trained by one Nvidia
GeForce RTX 3090.

4.3. Ablation Study

4.3.1. Stage analysis

To compare the denoising performance of different stages, we
implement comparative experiments on SIDD [27] dataset shown
in Table 1. Here, MSPNet-1, MSPNet-2, and MSPNet-3 represent
the first, second, and third stages of MSPNet respectively. The PSNR
of MSPNet-1 is 39.55 dB. The PSNR of MSPNet-2 and MSPNet-3
increase by 0.17 dB and 0.06 dB. It indicates that most of the noise
has been removed in the first stage. With the increase of the stage
numbers, the denoising performance is further improved to some
extent. Fig. 5 is their subjective results. It indicates that the text
is well reconstructed from MSPNet-1 and other sharper informa-
tion is reconstructed from MSPNet-2 and MSPNet-3. Hence, the
performance of MSPNet does not linearly increase with the stage
number. And it can be applied to different situations.

4.3.2. Model Analysis

Comparative experiments are implemented to compare some
combinations of CABs, U-Net, and CC-attention. The experimental
configurations and experimental results are shown in Table 2.
Model D; consists of CABs and CC-attention, model D, is composed
of U-Net and CC-attention, and D5 consists of the CABs and U-Net.
Compared D; with MSPNet, the effectiveness of CC-attention is
demonstrated. Compared with D;, MSPNet achieves 0.16 dB gains
and demonstrates the importance of non-local contextualized
information. When compared with D,, MSPNet achieves 0.06 dB
gains and demonstrates the effectiveness of local information.
Moreover, we perform ablation experiments on different combina-
tion models with CABs and U-Net for different stages on BSD68
dataset. The experimental configurations and results are shown
in Table 3. Specifically, CABs U U-Net represents the parallel struc-
ture that contains channel attention blocks and U-Net. It is noted
that each model contains CC-attention module at the end of each
stage and the column of "original image” represents whether the
original image is obtained at this stage. It indicates that MSPNet
can get better denoising performance with more stages. Moreover,
from the comparison results of model C; and model C3, C3 achieves
0.06 dB and 0.03 dB gains over C, at stage 2 and stage 3. The effec-
tiveness of CABs demonstrates the importance of local information
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Table 1
Evaluations on the number of stages on SIDD dataset.
Models MSPNet-1 MSPNet-2 MSPNet-3
Parameters(M) 18.2 36.4 54.6
PSNR(dB) 39.55 39.72 39.78

(a) MSPNet-1 (b) MSPNet-2

(c) MSPNet-3

Fig. 5. Subjective results of different stages.

during the denoising process. The original image is only available
for the first stage in model C,. Table 3 shows that model C,4
achieves 28.36 dB on BSD68 dataset with 6=50 and is 0.11 dB lower
than MSPNet. This indicates that the original image is very useful
to improve the performance of models in each denoising stage.

4.4. Synthetic Noisy Images

For experiments of synthetic noisy images, Kodak24, BSD68 and
Urban100 datasets are used as the test datasets. They all contain
gray-scale and color-scale images. We generate noisy color images
by adding AWGN with different noise levels ¢ = 30,50 and 70 to
the groundtruth.

4.4.1. Gray-scale Image Denoising

The PSNR and RMSE results are listed in Table 4. When com-
pared with the traditional method BM3D [1], MSPNet achieves
1.02 dB performance gains on Kodak24 dataset with ¢ = 50 . When
compared with classic CNN-based denoising methods, MSPNet
performs the best on all datasets with all nosie levels. Taking
Kodak24 with ¢ = 50 as a example, MSPNet achieves 0.50 dB and
0.33 dB performance gains over DnCNN [11] and MemNet [12].
When compared with RIDNet, MSPNet still surpasses 0.22 dB. In
addition, our MSPNet still performs well for high-resolution
images in Urban100 dataset, and achieves 0.07 dB (o = 30),
0.24 dB (¢ = 50) and 0.34 dB (¢ = 70) gains over RDN [14]. This
is mainly because of the effective fusion of spatial details and con-
textualized information. Besides, RMSE values of our MSPNet with
all noise levels are also the lowest, and also demonstrate the effec-
tiveness of MSPNet.

Visual gray-scale denoised results of different methods are
shown in Fig. 6 and Fig. 7. BM3D preserves the image structure
to some degree but fails to remove noise deeply as shown in
Fig. 6 (c) and Fig. 7 (c). BM3D could not well handle image textures
and causes lots of artifacts and blurs. DnCNN and FFDNet over-
smooth the edges and confuse the foreground and background.
RIDNet restores more clean images, but the textures and details
are destroyed during the denoising process and could not handle
the background shown in Fig. 6 (f). Our MSPNet can recover shar-
per edges and cleaner smooth areas. The zebra stripes and text are
very clean shown in Fig. 6 (g) and Fig. 7 (g).

4.4.2. Color-scale Image Denoising

The denoising results of color-scale images evaluated by PSNR
and RMSE are listed in Table 5. MSPNet achieves the highest PSNR
and the lowest RMSE on all datasets. Taking o = 50as an example,
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Table 2
Comparative experiments on BSD68 dataset.
Models U-Net CABs CC-attention PSNR(dB)
Dy I I 28.31
D, I v 28.41
D3 I I 28.46
MSPNet v I I 28.47
Table 3
Models evaluations of different combination on BSD68 dataset.
Models Combination Stage Orignal image PSNR(dB)
Cq Stagel: CABs 1 17 28.19
Stage2: CABs 2 I 28.29
Stage3: CABs 3 I d 28.33
Cy Stagel: U-Net 1 v 28.30
Stage2: U-Net 2 v 28.36
Stage3: U-Net 3 I 28.41
Cs3 Stagel: CABs U U-Net 1 I d 28.35
Stage2: U-Net 2 » 28.42
Stage3: U-Net 3 I 28.44
Cy Stagel: CABs U U-Net 1 I d 28.19
Stage2: CABs U U-Net 2 X 28.34
Stage3: CABs U U-Net 3 X 28.36
Table 4
Denoising results (PSNR/RMSE) of synthetic gray-scale images.
Methods Kodak24 BSD68 Urban100
30 50 70 30 50 70 30 50 70
BM3D [1] 29.13/0.31 26.99/0.51 25.73/0.68 27.76/0.43 25.62/0.70 24.44/0.92 28.75/0.34 25.94/0.65 24.27/0.95
RED [31] 29.77/0.27 27.66/0.44 26.39/0.59 28.50/0.36 26.37/0.59 25.10/0.79 29.18/0.31 26.51/0.57 24.82/0.84
DnCNN [11] 29.62/0.28 27.51/0.45 26.08/0.63 28.36/0.37 26.23/0.61 24.90/0.83 28.88/0.33 26.28/0.60 24.36/0.93
MemNet [12] 29.72/0.27 27.68/0.45 26.42/0.58 28.43/0.37 26.35/0.59 25.09/0.79 29.10/0.31 26.65/0.55 25.01/0.80
IRCNN [32] 29.53/0.28 27.45/0.46 N/A 28.26/0.38 26.15/0.62 N/A 28.85/0.33 26.24/0.61 N/A
FFDNet [33] 29.70/0.27 27.63/0.44 26.34/0.59 28.39/0.37 26.30/0.60 25.04/0.80 29.03/0.32 26.52/0.57 24.86/0.83
RIDNet [13] 29.90/0.26 27.79/0.42 26.51/0.57 28.54/0.36 26.40/0.58 25.12/0.78 N/A N/A N/A
RDN [14] 30.00/0.26 27.85/0.42 26.54/0.57 28.56/0.36 26.41/0.58 25.10/0.79 30.01/0.25 27.40/0.46 25.64/0.70
MSPNet(ours) 30.06/0.25 28.01/0.40 26.59/0.56 28.64/0.35 26.55/0.56 25.31/0.75 30.09/0.25 27.64/0.44 25.98/0.64

0

fﬂiﬁ\\m

14y

Lol

(SN(&

(a) BSD68:253027

(e) FFDNet

(f) RIDNet (g) MSPNet

Fig. 6. Synthetic gray-scale image denoising results on BSD68 with noise level g = 50.

when compared with CBM3D, MSPNet surpasses 1.11 dB on
Kodak24 dataset. When compared with CNN-based methods,
MSPNet also achieves super performance. Making a comparison
with RDN, our MSPNet achieves 0.08 dB and 0.16 dB gains on
Kodak24 and BSD68 datasets respectively. The rich contextualized
information and spatial details in images are effective in the
denoising task and suggest the improvement of the fusion of the
two kinds of information. Moreover, MSPNet surpasses 0.05 dB,
0.08 dB and 0.14 dB over RDN with ¢ = 30,50 and 70 on Kodak24

76

dataset. We can find that MSPNet can obtain more performance
gains with the increase of noise level.

The subjective results of each methods on images are visualized
in Fig. 8 and Fig. 9. We analyze the edge value and IQI from the sub-
jective figures. In fact, The clothing textures and the birds’ feathers
are difficult to be separated in the heavy noise situation. CBM3D
produces artifacts in the smooth area and is difficult to recover
clear edges as shown in Fig. 8 (c) and Fig. 9 (c). The classic CNN-
based methods tend to remove the details along with the noise
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Fig. 7. Synthetic gray-scale image denoising results on Kodak24 with noise level ¢ = 50.
Table 5
Denoising results (PSNR/RMSE) of synthetic color-scale images.
Methods Kodak24 BSD68 Urban100
30 50 70 30 50 70 30 50 70
CBM3D [2] 30.89/0.21 28.63/0.35 27.27/0.48 29.73/0.27 27.38/0.47 26.00/0.64 30.36/0.23 27.94/0.41 26.31/0.60
RED [31] 29.71/0.27 27.62/0.44 26.36/0.59 28.46/0.36 26.35/0.59 25.09/0.79 29.02/0.32 26.40/0.58 24.74/0.86
DnCNN [11] 31.39/0.19 29.16/0.31 27.64/0.44 30.40/0.23 28.01/0.40 26.56/0.56 30.28/0.24 28.16/0.39 26.17/0.62
MemNet [12] 29.67/0.28 27.65/0.44 26.40/0.58 28.39/0.37 26.33/0.59 25.08/0.79 28.93/0.33 26.53/0.57 24.93/0.82
IRCNN [32] 31.24/0.19 28.93/0.33 N/A 30.22/0.24 27.86/0.42 N/A 30.28/0.24 27.69/0.43 N/A
FFDNet [33] 31.39/0.19 29.10/0.31 27.68/0.44 30.31/0.24 27.96/0.41 26.53/0.57 30.53/0.23 28.05/0.40 26.39/0.59
RIDNet [13] 31.64/0.17 29.25/0.30 27.94/0.41 30.47/0.23 28.12/0.39 26.69/0.55 N/A N/A N/A
RDN [14] 31.94/0.16 29.66/0.28 28.20/0.39 30.67/0.22 28.31/0.38 26.85/0.53 31.69/0.17 29.29/0.30 27.63/0.44
MSPNet(ours) 31.99/0.16 29.74/0.27 28.34/0.37 30.76/0.21 28.47/0.36 27.03/0.50 31.64/0.17 29.40/0.29 27.66/0.44

(a) Kodak24:kodim15

(b) Noisy image

(e) FFDNet

) CBM3D (d) DnCNN

(f) RIDNet

(g) MSPNet

Fig. 8. Synthetic color-scale image denoising results on Kodak24 with noise level ¢ = 50.

resulting in over smoothing artifacts. The textures of the girl’s
sweater are not be recovered well as shown in Fig. 8 (d), (e) and
(f). The details of chicken feathers are destroyed to some extent
as shown in Fig. 9 (d), (e) and (f). From the Fig. 8 (g) and Fig. 9
(g), we find that MSPNet can restore vivid textures without blur-
ring the details. Therefore, the edge value and IQI of MSPNet is bet-

ter than other methods, while they can’t restore visual-pleasing
edge details.

4.4.3. Real Noisy Images

We also conduct a series of experiments to evaluate the denois-
ing performance of MSPNet on real noisy images. DnD [28] and
SIDD [27] datasets are adopted as our test datasets. DnD dataset
contains 50 real noisy images and needs to be submitted the
denoised images to the DnD official website for the test. And SIDD
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validation dataset contains 1280 noisy-clean image pairs with the
resolutions of 256 x 256.

Comparison methods contain several outstanding works, i.e.,
CBM3D [1], DnCNN [11], CBDNet [34], RIDNet [13], MIRNet [8]
and MPRNet [9]. The objective evaluation results on two datasets
are shown in Table 6. The traditional method CBM3D cannot get
good performance and achieves 25.56 dB on SIDD dataset. When
compared with early CNN-based models such as CBDNet and
DnCNN, MSPNet achieves huge improvements. When compared
with RIDNet with feature attention, MSPNet surpasses 1.07 dB on
SIDD dataset and 0.49 dB on DnD dataset. For SIDD dataset, MSPNet
achieves the best performance.

Meanwhile, we further validate the parameters and running
speed, it can be seen that MSPNet has only 19% GFLOPs of MIRNet.
Compared with DANet+, MSPNet has 86% parameters and achieves
0.31 dB performance gains.
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(b) Noisy image ) CBM3D (d) DnCNN
BSD68:163085
(2) (e) FFDNet (f) RIDNet (g) MSPNet

Fig. 9. Synthetic color-scale image denoising results on BSD68 with noise level ¢ = 50.

Table 6
Quantitative results on SIDD and DnD datasets
Methods Parameters(M) GFLOPs SIDD dataset DnD dataset
PSNR SSIM PSNR SSIM
BM3D [1] - - 25.65 0.685 34.51 0.851
CBDNet [34] 4.3 80.7 30.78 0.801 38.06 0.942
DnCNN [11] 0.7 26.33 0.583 3243 0.790
RIDNet [13] 1.5 196 38.71 0.951 39.26 0.953
DGNSCNet [6] 21 39.31 0.955 39.43 0.953
SADNet [23] 4.3 - 39.46 0.957 39.59 0.952
VDN [35] 7.8 99 39.28 0.956 39.38 0.952
Path-Restore [36] - - - - 39.00 0.954
MIRNet [8] 31.8 1572 39.72 0.959 39.88 0.959
MPRNet [9] 20.1 1176 39.71 0.958 39.80 0.954
DANet+ [37] 63.1 66 39.47 0.957 39.58 0.955
MSPNet(Ours) 54.6 298 39.78 0.959 39.75 0.954
(a) Noisy image (b) CBM3D (c) CBDNet (d) DnCNN (e) RIDNet
(f) SADNet (g) MIRNet (h) MPRNet (i) MSPNet(ours) (j) Groundtruth

Fig. 10. Visual comparison results of real noisy images on SIDD dataset.

Fig. 10 and Fig. 11 show the visual comparison results on SIDD ture. The text is very blurry as shown in Fig. 10 (c) and (e). Although
and DnD datasets. As shown in Fig. 10 (b) and Fig. 11 (b), there are SADNet restores many pleasing images, it still corrodes the edges
lots of noises in the background reconstructed by CBM3D and with residual noise. Our MSPNet can effectively remove the noise
DnCNN. CBDNet and RIDNet blur the edges and over-smooth the tex- and maintain clear edges as shown in Fig. 10 (i) and Fig. 11 (i).
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(f) SADNet

(g) DANet+

(h) VDN
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(e) Path-Restore

(i) MIRNet (j) MSPNet(ours)

Fig. 11. Visual comparison results of real noisy images on DnD dataset.

5. Conclusions

In this paper, MSPNet is proposed to progressively remove the
noise. It contains three denoising stages. Every stage includes a
parallel structure with an encoder-decoder branch and a single-
scale branch. The criss-cross attention is designed to fuse features
of contextualized information and spatial details. We conduct abla-
tion study to evaluate the effectiveness of stage numbers, CABs, U-
Net and CC-attention. Compared with the state-of-the-art works,
MSPNet achieves objective and subjective improvements on both
synthetic noisy image and real noisy images.
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