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Currently, an increasing number of video transmissions are focusing primarily on downstream machine vision 
tasks rather than on human vision. While the widely deployed human visual system (HVS)-oriented video cod-
ing standards such as H.265/HEVC and H.264/AVC are efficient, they are not the optimal approaches for video 
coding for machines (VCM) scenarios, leading to unnecessary bitrate expenditures. Academic and technical explo-
rations within the VCM domain have led to the development of several strategies; however, conspicuous limita-
tions remain in their adaptability to multitask scenarios. To address this challenge, we propose a Transformable 
Video Feature Compression (TransVFC) framework. It offers a compress-then-transfer solution and includes a 
video feature codec and feature space transform (FST) modules. In particular, the temporal redundancy of video 
features is squeezed by the codec through a scheme-based inter-prediction module. Then, the codec implements 
perception-guided conditional coding to minimize spatial redundancy and help the reconstructed features align 
with the downstream machine perception process. Subsequently, the reconstructed features are transferred to 
new feature spaces for diverse downstream tasks by the FST modules. To accommodate a new downstream task, 
only one lightweight FST module needs to be trained, avoiding the need to retrain and redeploy the upstream 
codec and downstream task networks. Experiments show that TransVFC achieves high rate-task performance 
for diverse tasks at different granularities. We expect our work to provide valuable insights for video feature 
compression in multitask scenarios. The codes are available at https://github.com/Ws-Syx/TransVFC.

1.  Introduction

Digital videos play a crucial role in our lives, constituting a sig-
nificant portion of the information consumed daily. For videos aimed 
at the human visual system (HVS), such as movies and short clips, 
preserving visual details perceptible to humans during the compres-
sion process is essential. Moreover, videos collected for machine 
vision tasks, such as surveillance [1] and facial recognition [2],
do not require all of their visual details to be preserved [3,4]. Recently, 
neural video compression frameworks for the HVS have evolved signif-
icantly and now offer excellent video compression performance [5–7]. 
However, a comprehensive exploration of neural-based video coding for 
machines (VCM) remains nascent.

∗ Corresponding author.
 E-mail addresses: yuxiaosun@bjtu.edu.cn (Y. Sun), yzhao@bjtu.edu.cn (Y. Zhao), mqliu@bjtu.edu.cn (M. Liu), yaochao@ustb.edu.cn (C. Yao), 
hhbai@bjtu.edu.cn (H. Bai), cylin@bjtu.edu.cn (C. Lin), wslin@ntu.edu.sg (W. Lin).

HVS-oriented video codecs, such as H.265/HEVC [9] and 
H.264/AVC [8], are frequently employed to compress videos for 
downstream analysis, as shown in Fig. 1(a). However, these approaches 
encounter two limitations in VCM scenarios. First, these compression 
frameworks focus on minimizing pixel-domain and HVS-related 
distortion, such as the peak signal-to-noise ratio (PSNR) and the 
multi-scale structural similarity index measure (MS-SSIM), rather than 
meeting the specific needs of machine vision applications, which is 
a suboptimal approach for machine vision. Second, machine vision 
tasks usually require only a subset of image content [3,15]. For 
example, indiscriminately transmitting the background of an image 
for the downstream image classification task leads to bitrate waste. 
More tailored approaches are needed in machine-centric scenarios.
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Fig. 1. A comparison among different pipelines in VCM scenarios. “Task(front)” 
represents the shallow layers of the downstream task network, “Task(tail)” de-
notes the rest of the downstream task network, and the snowflake symbol rep-
resents “module weights are frozen”. (a) Videos are compressed by a hybrid or 
neural-based codec [8–11] and analyzed by downstream networks. (b) Interme-
diate features are extracted by the shallow layers of the task network and com-
pressed by a specific-optimized video feature codec [12,13]. (c) The intermedi-
ate features for frame reconstruction are used to perform machine vision tasks, 
and the whole downstream task network is optimized [14]. (d) Our framework 
uses a video feature codec for continuous feature transmission, then transfers 
the reconstructed features to various downstream tasks via lightweight feature 
space transform (FST) modules.

Some studies have delved into the analyze-then-compress (ATC) 
paradigm to solve the above problems. The paradigm begins by extract-
ing features from images, followed by feature compression for specific 
downstream tasks [16]. To enhance the versatility, some studies [3] fo-
cus on mining the generalization of intermediate features across various 
downstream tasks. Nonetheless, the above advancements only cater to 
intra-compression, and do not address the temporal redundancy in con-
tinuous features. For video feature compression, one strategy [12,13] 
entails optimizing a video feature codec by the specific downstream 
loss, as shown in Fig. 1(b). Alternatively, another strategy [14] focuses 
on freezing the codec while fine-tuning the entire downstream task net-
work, as described in Fig. 1(c). However, these approaches require re-
training and redeploying either the upstream codec or the downstream 
machine vision networks to accommodate new downstream tasks, thus 
costing more computational resources and limiting their scalability in 
real-world applications.

To achieve better scalability and versatility in multitask scenarios, 
we propose a Transformable Video Feature Compression (TransVFC) 
framework that offers a compress-then-transfer solution. As illustrated 
in Fig. 1(d), our proposed framework contains an innovative neural-
based video feature codec and diverse lightweight feature space trans-
form (FST) modules. Specifically, the codec employs a scheme-based 
inter-prediction module to squeeze the temporal redundancy of video 
features and form a coarse compensated feature. Furthermore, it con-
ducts perception-guided conditional coding for fine reconstruction and 
helps the reconstructed feature align with the downstream machine 
perception process. Subsequently, the reconstructed features are trans-
ferred to other feature spaces of diverse downstream machine vision 
tasks via the FST modules. For any new downstream task, only one 
lightweight FST module must be trained instead of retraining and re-

deploying the upstream codec or the networks of the downstream tasks. 
Experiments are conducted on three machine vision tasks at differ-
ent granularities. The results demonstrate that the proposed TransVFC 
outperforms the state-of-the-art (SOTA) neural codecs on all down-
stream tasks and outperforms VTM-23.1 [17] on video instance seg-
mentation and object detection. The contributions of this study are as
follows.

• We propose a novel Transformable Video Feature Compression 
(TransVFC) framework. It comprises two components: a video fea-
ture codec and diverse feature space transform modules, offering a 
scalable and deployable VCM solution.

• We introduce an innovative neural-based video feature codec to 
squeeze the redundancy encountered in the feature domain. It in-
cludes a scheme-based inter-prediction module and a perception-
guided conditional coding module.

• We design a lightweight feature space transform module that trans-
fers intermediate features to diverse downstream tasks in a highly 
scalable way. The experimental results validate the scalability and 
effectiveness of TransVFC across multiple downstream machine vi-
sion tasks of varying granularities.

2.  Related works

2.1.  Neural video compression

Most of the existing neural video compression methods follow 
the motion-then-residual paradigm [5,6,18] and mainly include inter-
prediction and residual (i.e. context) compression. Lu et al. [19] pro-
posed the first end-to-end video compression framework called DVC, 
which uses optical flow for inter-prediction and replaces the DCT trans-
form with an autoencoder. Lu et al. [20] proposed FVC to convert videos 
from the pixel domain to the feature domain and use deformable convo-
lution for motion estimation and motion compensation in the feature do-
main. In traditional hybrid coding frameworks and above neural video 
compression frameworks, residuals are calculated based on mathemati-
cal subtraction. This method is simple and easy to implement, but it may 
not be the optimal solution for compression. Li et al. [21] redefined the 
concept of residual and transform subtraction-based residual into con-
ditional residual calculated by the neural codec, named DCVC. Sheng et 
al. [22] proposed the DCVC-TCM with a multi-scale conditional resid-
ual, which enhances the ability to remove inter-frame temporal redun-
dancy. Overall, the existing neural video compression methods achieve 
improved compression efficiency from various perspectives such as
inter-prediction, residual compression, and entropy models. Many NVC 
methods (e.g., the DCVC series [5–7]) demonstrate formidable compres-
sion capabilities.

2.2.  Neural-based video coding for machines

The exploration of neural-based VCM reveals two pivotal paradigms: 
the compress-then-analyze (CTA) paradigm and the analyze-then-
compress (ATC) paradigm.

2.2.1.  Image and video compression in the CTA paradigm
With the surge in machine vision applications, video compression 

frameworks are re-envisioned to better cater to downstream machine 
vision tasks. Some methods [23,24] bridge the image codec and down-
stream task networks, and then integrate the loss function of the 
downstream task to guide the optimization process of the compression
network, thus tailor-fitting it for attaining enhanced performance on 
specific tasks. In addition, Tian et al. [10,11] proposed maintaining se-
mantic similarities through an additional bitstream, which improves the 
performance on multiple downstream tasks in an unsupervised way. Fur-
thermore, the introduction of plug-and-play preprocessing modules [15] 
represents a significant improvement. These approaches achieve better 
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Fig. 2. Overview of the proposed TransVFC framework. 𝐹𝑂𝐷
𝑡 , 𝐹 𝑆𝑆

𝑡 , and 𝐹 𝐼𝑆
𝑡  denote features for downstream object detection, semantic segmentation, and instance 

segmentation tasks, respectively. The TransVFC framework employs a compress-then-transfer process. Specifically, the codec conducts scheme-based inter-prediction 
to form a coarse compensated feature and then performs perception-guided conditional coding for fine reconstruction. The reconstructed features are subsequently 
transferred to other feature spaces of diverse downstream machine vision tasks via the FST modules. Notably, each downstream task corresponds to a distinct FST 
module.

downstream performance by enhancing important regions and filtering 
useless details for downstream analysis. Moreover, VCM is a sub-task 
of video coding for humans and machines (VCHM). Some studies [3,4] 
proposed to modify the decoder and use features that are originally ded-
icated to fully reconstructing images for downstream video analysis.

2.2.2.  Feature compression in ATC paradigm
Intermediate feature compression is a widely studied VCM method 

under the ATC paradigm. Intermediate features contain more general in-
formation about images than high-level features do and offer the poten-
tial for conducting multitask analysis. Moreover, they preserve the orig-
inal spatial structure, which enables more effective redundancy removal 
through neural networks. Unlike shallow features, intermediate features 
undergo a preliminary extraction process, where irrelevant information 
is filtered out for machine vision tasks, making it easier to compress. 
In image feature compression, some approaches adopt traditional hy-
brid codec [25] or variational autoencoder (VAE)-based networks that 
are optimized by feature distortion and specific task losses [26] for 
intra-compression. Moreover, some methods [27,28] change the com-
pressed object from a single intermediate feature to multi-scale features 
and compress them into a joint bit stream. In the field of video fea-
tures compression, Misra et al. [12] introduced an end-to-end feature 
compression network. It employs a simple ResBlock-based [29] bidirec-
tional interpolation in the feature domain, and the entire framework 
is optimized for specific downstream tasks. Sheng et al. [14] proposed 
a framework that conducts pixel-feature-domain inter-compression and 
supports multiple downstream tasks by freezing the upstream codec and 
optimizing the downstream networks. However, a limitation is encoun-
tered when retraining and redeploying the upstream feature codec or 
the whole downstream task networks in practical applications. In light 
of the above challenge, there is a growing need for adaptable and scal-
able VCM solutions.

3.  Methodology

The pipeline of the proposed Transformable Video Feature Compres-
sion (TransVFC) framework is shown in Fig. 2. It contains two main com-
ponents: a neural-based video feature codec and diverse feature space 
transform (FST) modules. Inspired by [12,20], the intermediate features 
are extracted by the 𝑟𝑒𝑠2 layers of the ResNet50 backbone in Faster R-
CNN [30]; then, the 256D features are converted into a 64D representa-
tion to squeeze their channel redundancy. The video feature codec fol-
lows the motion-then-residual paradigm; it employs the scheme-based 
inter-prediction module to obtain a coarse motion-compensated feature 

Fig. 3. Temporal, channel, and spatial redundancies among video features. The 
above redundancies need to be squeezed by the video feature codec.

and then uses the perception-guided conditional coding module for fine 
feature reconstruction. Afterward, the FST modules transfer the recon-
structed intermediate feature 𝐹𝑡 to different feature spaces, making them 
suitable for various downstream machine vision tasks. Notably, each 
downstream task is associated with a dedicated FST module.

3.1.  Scheme-based inter-prediction

Temporal redundancy exists among repeated spatial structures, thus 
highlighting the need for redundancy removal by inter-prediction tech-
niques, as shown in Fig. 3. For conducting inter-prediction in the fea-
ture domain, the deformable-convolution-based approach [20] focuses 
on finding the optimal reference region and recombining existing fea-
ture values. To better address complex motion, we depart from this 
referencing-and-recombination method. Instead, we propose a scheme-
based inter-prediction module. It generates a variety of potential motion 
schemes from the reference frame and selectively combines them to ob-
tain the compensated feature.

In the encoder, the motion estimation module performs a four-step 
sampling procedure for motion analysis across three distinct scales. The 
motion representation 𝑚𝑡 contains both the global trends and the high-
frequency details of motion, as shown in Fig. 4(b). Afterward, the motion 
encoder compresses 𝑚𝑡 into a compact latent representation 𝑧 with di-
mensions of (𝐻∕16,𝑊 ∕16, 64). Subsequently, the latent representation 𝑧
is quantized into �̂� for entropy coding and transmission. In the decoder, 
the motion combination matrix �̂�𝑡 is reconstructed by the motion de-
coder module from �̂�. Leveraging the channel-wise computation by the 
depthwise separable convolution [31], the motion compensation mod-
ule generates diverse possible motion schemes based on the reference 
frame 𝑓𝑟𝑒𝑓 . Then, referring to the motion representation �̂�𝑡, schemes are 
judiciously selected and combined to form the compensated feature 𝑓𝑡. 
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Fig. 4. (a) The overall structure of the proposed neural-based video feature codec. It contains 3 main stages: channel reduction/restoration, scheme-based inter-
prediction, and perception-guided conditional coding. The green modules are located on both the encoder and decoder sides, whereas the yellow modules are only 
used on the encoder side. (b) The structure of the scheme-based inter-prediction module, including a motion estimation module, a motion compensation module, 
a motion encoder, and a motion decoder. 𝐷𝑒𝑝𝑡ℎ𝐶𝑜𝑛𝑣(𝑛) represents a depthwise separable convolution layer with the number of channels increased by 𝑛 times. 
The structure of 𝐷𝑒𝑝𝑡ℎ𝐵𝑙𝑜𝑐𝑘 is similar to 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 but replaces the convolution layers with the depthwise separable convolution layers. (c) The structure of the 
perception-guided conditional encoder and decoder. High-level and multi-scale features 𝐶𝑒𝑛𝑐 and 𝐶𝑑𝑒𝑐 are inferred from the Perception Network and used as conditions 
during the residual compression and reconstruction phases, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

More analyses and visualizations are shown in Section IV. The whole 
scheme-based inter-prediction process is described as follows:

𝑓𝑡 = 𝑀𝐶(𝑓𝑟𝑒𝑓 ,𝑚(⌊𝑚(𝑀𝐸(𝑓𝑡, 𝑓𝑟𝑒𝑓 ))⌉)) (1)

where 𝑀𝐸(⋅) denotes motion estimation, 𝑀𝐶(⋅) denotes motion com-
pensation. 𝑚(⋅) and 𝑚(⋅) denote motion encoder and decoder, respec-
tively. ⌊⋅⌉ denotes the quantization operation.

3.2.  Perception-guided conditional coding

The compensated feature 𝑓𝑡 is obtained from the previous scheme-
based inter-prediction. However, there is a gap in content detail between 
𝑓𝑡 and 𝑓𝑡, making it essential to complete the content details using the 
residual. We employ conditional coding to compress the residual in the 
feature domain. Since different machine vision tasks share common per-
ceptions [32], we further introduce multi-scale high-level features in 
Faster R-CNN [30] as perception conditions to help the reconstructed 
features better align with the downstream machine perception. Further-
more, the perception conditions offer TransVFC more prior knowledge 
during residual compression and reconstruction phases for achieving 

lower entropy and better spatial redundancy removal, as follows:
𝐻(𝑓 − 𝑓 ) > 𝐻(𝑓 |𝑓 ) > 𝐻(𝑓 |𝑓, 𝐶𝑒𝑛𝑐 , 𝐶𝑑𝑒𝑐 ) (2)

where 𝐻(⋅) represents entropy, 𝑓 denotes the compensated feature, 𝐶𝑒𝑛𝑐
and 𝐶𝑑𝑒𝑐 denote the perception conditions for encoding and decoding, 
respectively.

As depicted in Fig. 4(c), the perception-guided conditional encoder 
comprises a four-step feature extraction process that compresses residu-
als into a compact and flat representation, while the decoder mirrors this 
structure symmetrically to reconstruct the intermediate features. Multi-
scale perception conditions are strategically inserted into positions that 
align with their corresponding spatial resolutions (specifically at the 1∕4, 
1∕8, and 1∕16 scales), serving as conditions for both encoding and de-
coding to enhance the overall performance of the codec. In particular, 
the encoding perception conditions 𝐶𝑒𝑛𝑐 = {𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6} are inferred 
from the original intermediate feature 𝐹𝑡 via feature pyramid network 
(FPN) backbone of Faster R-CNN. Due to the invisibility of 𝐹𝑡 during 
decoding, the decoding perception condition 𝐶𝑑𝑒𝑐 is calculated from the 
compensated feature 𝐹𝑡. The whole process of perception-guided condi-
tional coding is described as follows:
𝑓𝑡 = 𝑐 (⌊𝑐 (𝑓𝑡|𝐶𝑒𝑛𝑐 , 𝑓𝑡)⌉|𝐶𝑑𝑒𝑐 , 𝑓𝑡) (3)
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Fig. 5. Visualizations of the first three channels of the intermediate features 
across various machine vision networks. There are similar spatial structures but 
distinct feature patterns and textures among different intermediate features.

Fig. 6. The structure of feature space transform module. The reconstructed in-
termediate feature 𝐹𝑡 is transferred to 𝐹 𝑖

𝑡  in a new feature space for the 𝑖-th 
downstream machine vision task.

where 𝑐 (⋅) and 𝑐 (⋅) denote perception-guided conditional encoder and 
decoder, respectively.

The latent representation 𝑦 of the residual with dimensions of 
(𝐻∕16,𝑊 ∕16, 96) is entropy-encoded by an entropy model similar to 
DCVC-TCM [22]. With respect to computational efficiency, autoregres-
sive or other complex techniques are not employed in TransVFC. Ad-
ditionally, a detailed explanation of how the perception-guided condi-
tional coding removes redundancy is given in Section IV.

3.3.  Task-oriented feature space transform

Owing to the gap between the intermediate features of different neu-
ral networks, as shown in Fig. 5, the decoded video features cannot be 
directly used in diverse downstream tasks. Some studies [3,14] have 
already shown that intermediate features have the potential to be con-
verted and used in other machine vision tasks. Inspired by [3], we design 
the multi-scale feature space transform (FST) module that maps the re-
constructed features to other feature spaces for different downstream 
tasks. Different from the existing neural-based VCM strategies [12,
14], our approach does not fine-tune the upstream feature codec and
downstream task networks. Instead, it only requires a single lightweight 
FST module to be trained for a specific downstream task.

As shown in Fig. 6, the FST module is structured with three branches: 
the up-then-down branch, which coarsely reconstructs the current frame 
�̂�𝑡 for content preservation in pixel domain; the bottleneck-resblock [29] 
branch, facilitating feature migration at the original shape; and the 
down-then-up branch, focusing on global information extraction. Ad-
ditionally, a convolution layer is used to align the channel and spatial 
shape of the output features to the specific downstream task. The process 
of feature space transform is described below:
𝐹 𝑖
𝑡 = 𝐹𝑆𝑇 𝑖(𝐹𝑡) (4)

where 𝐹𝑆𝑇 𝑖(⋅) denotes the 𝑖-th FST module, 𝐹𝑡 denotes the intermediate 
feature reconstructed by the video feature codec, and 𝐹 𝑖

𝑡  denotes the 
transferred feature that is suitable for the 𝑖-th downstream task.

3.4.  Optimization

Since strong correlations between HVS-oriented pixel-domain met-
rics and machine vision performance are lacking, as mentioned in Fig. 7. 

Fig. 7. The correlations between the pixel-domain and HVS-related distortion 
metric (the PSNR and MS-SSIM) and the downstream machine vision perfor-
mance (e.g., the average precision of video instance segmentation) are weak. 
Optimizing the compression network for minimizing pixel-domain HVS distor-
tions is not the best approach for the VCM scenario. The degraded videos are 
collected from traditional hybrid codecs and neural-based codecs [6,7,9,20–22]. 
Particularly, the Youtube-VIS 2019 dataset and the CrossVIS [33] model are 
used.

The optimization of our proposed TransVFC is mainly conducted in the 
feature domain and divided into two stages.

3.4.1.  Optimization of the video feature codec
Rate-distortion optimization (RDO) is performed for the proposed 

video feature codec in the feature domain. The loss function 𝑐𝑜𝑑𝑒𝑐 is 
defined as follows:
𝑐𝑜𝑑𝑒𝑐 = 𝜆𝑅(𝑅𝑟 + 𝑅𝑚) + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 (5)

where 𝜆𝑅, 𝜆𝑓 , 𝜆𝑐 , and 𝜆𝑝 represent coefficients for balancing different 
loss terms. 𝑅𝑟 and 𝑅𝑚 represent the bitrates of the residual and motion 
representation, respectively. 𝐷𝑓  denotes the mean square error (MSE) 
between the original intermediate feature 𝐹𝑡 and the reconstructed fea-
ture 𝐹𝑡. 𝐷𝑐 denotes the MSE between 𝐹𝑡 and compensated feature 𝐹𝑡. 𝐷𝑝
denotes the distortion in the perception space and is defined as follows:

𝐷𝑝 =
1
𝑁

𝑁=5
∑

𝑗=1
𝑀𝑆𝐸(𝑃𝑁𝑗 (𝐹𝑡), 𝑃𝑁𝑗 (𝐹𝑡)) (6)

where 𝑃𝑁(⋅) denotes the perception network contained in TransVFC, 
and 𝑁 denotes the number of high-level output features derived from 
the perception network.

3.4.2.  Optimization of feature space transform module
Since the FST module mainly transforms the reconstructed interme-

diate features to other spaces for downstream networks. It is optimized 
for minimizing the downstream task loss and feature distortion in the 
new feature space. All other modules are frozen in this training stage. 
The total loss of the FST modules is defined as follows:
𝐹𝑆𝑇 = 𝜆𝑡𝑎𝑠𝑘𝑡𝑎𝑠𝑘 + 𝜆𝑥𝐷𝑥 + 𝜆𝑚𝑖𝑑𝐷𝑚𝑖𝑑 + 𝜆ℎ𝑖𝑔ℎ𝐷ℎ𝑖𝑔ℎ (7)

where 𝜆𝑡𝑎𝑠𝑘, 𝜆𝑥, 𝜆𝑚𝑖𝑑 and 𝜆ℎ𝑖𝑔ℎ represent coefficients for balancing differ-
ent loss terms. 𝑡𝑎𝑠𝑘 denotes the loss of downstream task network. 𝐷𝑚𝑖𝑑
denotes the MSE between the transferred feature 𝐹 𝑖

𝑡  and the original 
feature 𝐹 𝑖

𝑡  for the 𝑖-th downstream task, 𝐷𝑥 denotes the MSE between 
the coarsely reconstructed frame �̂�𝑡 and the original frame 𝑥𝑡, and the 
definition of 𝐷ℎ𝑖𝑔ℎ is defined as follows:

𝐷ℎ𝑖𝑔ℎ = 1
𝑁

𝑁
∑

𝑗=1
𝑀𝑆𝐸(𝑇𝐴𝑆𝐾 𝑖

𝑗 (𝐹
𝑖
𝑡 ), 𝑇𝐴𝑆𝐾

𝑖
𝑗 (𝐹

𝑖
𝑡 )) (8)

where 𝑇𝐴𝑆𝐾 𝑖(⋅) represents the backbone of the 𝑖-th downstream task 
network and 𝑁 denotes the number of output high-level features from 
the 𝑖-th downstream backbone.
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Table 1 
Training strategy for video feature codec.

 Stages 𝑐𝑜𝑑𝑒𝑐  Learning rate
 1 1

2
𝜆𝑅𝑅𝑦 + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 1 × 10−4

 2 1
2
𝜆𝑅(𝑅𝑦 + 𝑅𝑧) + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 1 × 10−4

 3 𝜆𝑅(𝑅𝑦 + 𝑅𝑧) + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 1 × 10−4

 4 𝜆𝑅(𝑅𝑦 + 𝑅𝑧) + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 5 × 10−5

 5 𝜆𝑅(𝑅𝑦 + 𝑅𝑧) + 𝜆𝑓𝐷𝑓 + 𝜆𝑐𝐷𝑐 + 𝜆𝑝𝐷𝑝 1 × 10−5

Table 2 
Training hyperparameters 𝜆 for feature space transform module.

 Downstream tasks 𝜆𝑚𝑖𝑑 𝜆ℎ𝑖𝑔ℎ 𝜆𝑥 𝜆𝑡𝑎𝑠𝑘

 Object detection  16  4  1024  10
 Instance segmentation  8  64  1024  1
 Semantic segmentation  16  64  1024  10

4.  Experiment

4.1.  Experimental settings

4.1.1.  Downstream machine vision tasks
The performance of TransVFC is verified on three downstream tasks 

at different granularities. We employ the CrossVIS [33] framework for 
video instance segmentation, DeepLab-v3 [34] for semantic segmenta-
tion, and Faster R-CNN [30] for object detection. The parameters of all 
the downstream networks are frozen throughout the experiments.

4.1.2.  Datasets
Experiments are conducted on the YoutubeVIS2019 (YTVIS2019) 

[33] and Video Scene Parsing in the Wild (VSPW) [35] datasets. The 
YTVIS2019 dataset is a large video dataset that includes 2883 videos 
with frame-level annotations of 40 categories for video instance segmen-
tation. The resolutions of the videos range from 1080P to 360P, and the 
data preproces stages follow [33]. The VSPW dataset is a large video 
dataset that includes 3536 videos in 480P resolution across 231 scenar-
ios. It has frame-level annotations of 124 categories for video semantic 
segmentation.

4.1.3.  Compared methods
The proposed TransVFC framework is compared with traditional hy-

brid codecs VTM-23.1 (lowdelay-P) [17], HM-18.0 (lowdelay-P) 1 [36] 
and x265 (FFmpeg-4.2.7, zerolatency) 2 [37], and open-sourced neural 
video compression (NVC) frameworks, such as DCVC-DC [6], DCVC-
HEM [7], DCVC-TCM [22], DCVC [21], and FVC [20]. For compared 
NVC methods, all available pre-trained models are evaluated across 
different metrics (PSNR, MS-SSIM, YUV), showcasing only the model 
with the highest rate-task performance. In addition, VCM-oriented video 
codec SMC++ [11] is used as a comparison method.

4.1.4.  Implementation details
In the first stage, we optimize the video feature compression frame-

work at different bitrates with 𝜆𝑅 = 16, 32, 128, 256, 𝜆𝑓 = 16, 𝜆𝑐 = 0.1𝜆𝑓 , 
and 𝜆𝑝 = 4. The training strategy is shown in Table 1. The input features 
during training are cropped to 128 × 128. The neural-based video feature 
codec is optimized on the YTVIS2019-train.

1 The command of VTM and HM is ./bin/TAppEncoderStatic 
-c ./cfg/encoder_lowdelay_P_main.cfg -i {input_path} -b 
{output_binary_path} -o {output_path} -wdt {width} -hgt {height} 
-q {QP} -fr {frame_rate} -InputChromaFormat=420 --IntraPeriod=12
2 The command of x265 is FFREPORT=file=ffreport.log:level=56 ffmpeg 

-pix_fmt yuv420p -s {width}x{height} -i {input_path} -c:v libx265 
-tune zerolatency -x265-params "crf={crf}:keyint=12:verbose=1" 
out.mkv

Table 3 
BD-Rate (%) ↓ comparison. The anchor is VTM-23.1. Bold indicates the best 
results.

 Object  Semantic  Instance
 detection  segmentation  segmentation

 VTM-23.1 (low-delay) [17]  0.00  0.00  0.00
 HM-18.0 (low-delay) [36]  7.82 -11.40  5.60
 x265 (zero-latency) [37] −1.16  36.34  3.91
 FVC (CVPR’20) [20]  97.15  130.03  368.56
 DCVC (NerulPS’21) [21]  50.34  286.38  109.43
 DCVC-TCM (TMM’22) [22]  7.84  204.46  32.69
 DCVC-HEM (ACMMM’22) [7] −3.92  183.80  46.34
 DCVC-DC (CVPR’23) [6] −4.53  145.53  26.56
 SMC++ (arXiv’24) [11] −4.28  74.61 −6.77
 TransVFC (Ours) -15.21  63.60 -27.67

In the second stage, different weights 𝜆 are used to train FST mod-
ules for each downstream task, as shown in Table 2. Owing to the im-
practicality of exhaustively tuning the 𝜆 weights under computational 
constraints, we determine them empirically. Inspired by the existing ap-
proach [34], we follow a simple rule: each loss term is scaled such that 
its magnitude and the gradient it contributes to the FST module are com-
parable to those of others terms. This strategy facilitates stable training 
and balanced learning across multiple objectives. The number of train-
ing iteration for the FST module is 100𝑘, and the learning rate is set to 
1 × 10−5. Notably, the FST modules for different downstream tasks are 
trained separately. 

The implementation of TransVFC is based on PyTorch 1.9.0. The 
whole framework is optimized on a single NVIDIA RTX 3090 24GB with 
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 4.

4.2.  Evaluation metrics

The number of bits per pixel (bpp) is used to represent bitrate cost, 
where a lower bpp value indicates a higher compression ratio. For 
downstream tasks, average precision (AP) ↑ is used to evaluate the 
performance of object detection and instance segmentation, referring 
to [30,33]. While the mean intersection over union (mIoU) ↑ is used 
to assess semantic segmentation performance, referring to [34]. The 
PSNR ↑ and MS-SSIM ↑ are employed to evaluate the quality of the re-
constructed frames. The Bjøntegaard Delta Rate (BD-Rate) ↓ is used to 
quantify the overall rate-task performance. It reflects the percentage of 
bitrate change while achieving the same task performance. A lower BD-
Rate represents greater bitrate savings. VTM-23.1 serves as the anchor 
for calculating the BD-Rate. 
4.3.  Rate-task performance

4.3.1.  Object detection
The implementation of the Faster R-CNN [30] is based on Detec-

tron2 [38], which is an extensively used and efficient framework for 
keypoint detection, object detection, and segmentation. The task per-
formance across various bitrates is displayed in Fig. 8(a). In terms of 
rate-task performance, TransVFC achieves a 15.21% bitrate reduction 
relative to VTM, as shown in Table 3. From a rate-time perspective, 
TransVFC achieves a better speed-performance balance than the other 
neural-based methods do. Visualization examples of the object detec-
tion results are shown in Fig. 9. TransVFC tends to produce fewer false 
detections under various bitrates and scenarios. 

4.3.2.  Semantic segmentation
We implement the DeepLab-v3 [34] via TorchVision-0.9.0. Fol-

lowing [34], mean intersection over Union (mIoU) is used to evalu-
ate the semantic segmentation performance of the tested methods. As 
demonstrated in Table 3, TransVFC outperforms the best neural-based 
method, SMC++ [11], in terms of rate-task performance. Addition-
ally, TransVFC achieves the best speed-performance balance among the 
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Fig. 8. Rate-task performance of all the compared methods (in the upper row) and execution times of neural-based methods (in the lower row) on object detection, 
semantic segmentation, and instance segmentation tasks. The execution time, including compression and downstream analysis, is evaluated with 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 1 on a 
single NVIDIA RTX 3090 24GB, excluding the time of file I/O.

Fig. 9. Visualization of object detection results at different bitrates, along with the corresponding bpp, MS-SSIM, and PSNR values. The proposed TransVFC tends to 
produce fewer false detections. In contrast, other methods exhibit false positive detections, despite achieving high reconstruction quality.
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Fig. 10. Visualization of semantic segmentation, bpp, MS-SSIM, and PSNR at different bitrates. TransVFC better preserves object contours and performs segmentation 
more accurately under challenging conditions (e.g., fog, low-light, and intense motion) compared to other methods.

Fig. 11. Visualization of video instance segmentation, bpp, MS-SSIM, and PSNR at different bitrates. In videos with intense motion (in the first two rows) and 
tiny movement (in the last two rows), TransVFC maintains the original prediction and ensures consistency of the instance. The visualization shows that even if the 
reconstructed frames have high reconstruction quality, they may still underperform in downstream tasks.

tested neural-based methods, as shown in Fig. 8(b). Visualization of se-
mantic segmentation is provided in Fig. 10, where TransVFC demon-
strates better preservation of object contours and more accurate seg-
mentation under challenging conditions, such as fog and low-light, com-
pared to other methods. 

4.3.3.  Instance segmentation
CrossVIS [33] is implemented on its officially released code. As 

demonstrated in Table 3, in terms of rate-task performance, TransVFC 
achieves the highest compression ratio, achieving a 27.67% bitrate re-
duction compared to VTM. In terms of execution speed, compared with 
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Table 4 
Execution time (ms) on 720P frame, number of model parameters, and MACs 
per pixel of neural-based methods. Notably, TransVFC has 22.4 optimized 
parameters and 26.7M frozen parameters. 
   Non-stream 

inference
 With bitstream Model 

params
MACs per 
pixel

 
  Encoding  Decoding  
  FVC (CVPR’20) [20] 165.8  /  / 21.0M /  
  DCVC (NerulPS’21) [21] 129.1  1818.9  4738.3 7.9M 1.09M  
  DCVC-TCM (TMM’22) [22] 197.6  232.8  121.4 10.7M 1.40M  
  DCVC-HEM (ACMMM’22) [7] 240.6  250.3  124.6 17.5M 1.58M  
  DCVC-DC (CVPR’23) [6] 347.5  285.5  243.8 19.8M 1.27M  
  SMC++ (arXiv’24) [11] 830.1  /  / 96.2M  
  TransVFC (Ours) 191.2  234.5  122.5 49.1M 1.16M  

the high-performance NVC method DCVC-DC [6], TransVFC has a 34% 
faster execution speed, as shown in Fig. 8(c). As shown in Fig. 11, 
TransVFC produces better subjective segmentation results at different 
bitrates. Despite the high quality of reconstructed frames, the down-
stream task network CrossVIS struggles with maintaining the segmenta-
tion consistency of the main objects (e.g., the skateboard and the man 
holding an umbrella), often incorrectly segmenting them into multiple 
instances. In contrast, our framework better maintains the consistency 
of the instance and maximally retains the original segmentation results.

4.4.  Analysis

4.4.1.  Complexity of video features compression
We compare the execution time, number of parameters, and MACs 

of our proposed video feature codec with other neural-based compres-
sion methods [6,7,11,20–22], as shown in Table 4. Our proposed video 
feature codec consists of an optimized codec with 22.4M parameters 
and a frozen perception network with 26.7M parameters. The inference 
time reflects the computational complexity of all the neural-based mod-
ules on the GPU without including arithmetic coding. The encoding and 
decoding times include the arithmetic coding operation time but ex-
clude file I/O time. Although our codec has more parameters than other 
neural compression methods, it has fewer MACs per pixel than high-
performance codecs like DCVC-DC and DCVC-HEM. TransVFC has a bet-
ter complexity-performance balance than other high-performance NVC 
approaches, with efficiency gains stemming from three aspects. First, 
the intermediate features have a 1/4 spatial size of the original image, 
which helps TransVFC use fewer convolutions and down/upsampling 
operations than neural video compression frameworks. Second, to im-
prove encoding and decoding speed, TransVFC uses a simple entropy 
model including a mean-scale hyperprior module and a temporal prior 
module [22], which is better parallelized. Third, introducing depthwise 
convolution reduces the computational complexity of the model [6,31], 
resulting in lower MACs. 
4.4.2.  Complexity of feature space transform

The FST module in the TransVFC framework is lightweight, with a 
parameter size of 4.3M. It is significantly smaller than the networks used 
for downstream visual analysis (e.g., the CrossVIS-ResNet50 version has 
37.4M parameters), adding less additional training overhead. The exe-
cution time of FST under a 720P resolution is 11.7 ms, which accounts 
for only 3.3% of the total time. The MACs per pixel of the FST mod-
ule are 0.16M. The above results indicate that the FST module is highly 
effective during both the training and inference stages.

4.4.3.  Visualization of the scheme-based inter-prediction module
A visualization of our proposed scheme-based inter-prediction mod-

ule is shown in Fig. 12. This module generates potential pattern schemes 
and then combines them through motion representation. The motion 
representation captures motion information, including local edge move-
ments (e.g., channels 0 and 8) and large-scale motion (e.g., the rapid 
movement of the vehicle in channels 4 and 6). Moreover, motion 
schemes illustrate the potential components of the compensated feature, 

Fig. 12. Visualization of the compensated features, motion representations, and 
motion schemes. 

Fig. 13. The process of perception-guided conditional encoding. The feature is 
compressed into a compact representation with lower entropy with the help of 
perception conditions as prior knowledge. 

incorporating various types of pattern schemes. These schemes are sub-
sequently synthesized into the compensated feature under the guidance 
of the motion representation.

The compensated feature is a coarsely reconstructed feature ob-
tained by inter-prediction and is similar to the current feature. The 
feature of the car is already moved to a new position in the compen-
sated frame, as shown in Fig. 12. Since the compensated feature is 
merely a coarse-version feature of the current frame, the feature details 
are fulfilled through following perception-guided conditional coding
process.

4.4.4.  Relation between perception-guided conditional coding and spatial 
redundancy removal

Spatial redundancy is prevalent in intermediate features, as adja-
cent regions often exhibit similar textures and high-frequency details, 
leading to overlapping or repetitive information. The perception-guided 
conditional coding module addresses this redundancy through two key 
perspectives: First, as depicted in Fig. 13, the original features are down-
sampled multiple times and become smaller, more compact, and flatter. 
For a better understanding of the decrease in the amount of informa-
tion, we take one frame as an example and calculate its entropy per 
pixel, as shown in Eq. 9. Fig. 13 shows that the entropy of the feature 
decreases during the encoding process; then, the feature is compressed 
into a latent representation with a lower entropy that is suitable for en-
tropy coding and transmission. Second, the intermediate features to be 
compressed have significant spatial structural correlations and repeti-
tion with the perception condition. Since the perception condition (act-
ing as prior knowledge) is already accessible on both the encoder and 
decoder sides, there is no need to redundantly transmit this content from 
the encoder to the decoder. Instead, the decoder can effectively recon-
struct the original content using the available perception information, 
further squeezing the spatial redundancy and enhancing the efficiency 
of the coding process.

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑁
∑

𝑖
𝑝(𝑓𝑖)𝑙𝑜𝑔(𝑝(𝑓𝑖))∕(𝐻 ×𝑊 ) (9)
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Fig. 14. Visualization of the intermediate results produced by each branch in 
the FST module for video instance segmentation and object detection tasks.

Fig. 15. Visualization of the upsampled results. The “up-then-down" branch can 
coarsely reconstruct the original content in the pixel domain, which helps the 
feature transfer process gain knowledge of pixel-domain content.

where 𝑁 denotes the number of values in 𝑓𝑖, 𝑝(⋅) represents the prob-
ability of each value. 𝐻 and 𝑊  represent the height and width of the 
current frame, respectively. The feature 𝑓 undergoes 8-bit quantization 
for probability statistics.

4.4.5.  How the multi-branch architecture of FST works
To better understand the behavior of the three branches contained 

in the FST module, intermediate results produced by each branch are 
visualized in Fig. 14. Since each FST module is optimized for a specific 
task, different branches contribute differently depending on the given 
task. We use two metrics to evaluate the intermediate results: Sobel-
based sharpness and the high-frequency ratio, defined as the proportion 
of FFT energy beyond the central 1∕4 area. First, in terms of the high-
frequency ratio, the down-then-up branch tends to produce global fea-
ture maps with richer content for the coarse-grained detection task. In 
contrast, the up-then-down and bottleneck-resblock branches generate 
richer low-level details for the fine-grained instance segmentation task. 
This aligns with the task needs: segmentation relies more on local details 
to support pixel-level classification and fine boundary extraction. Sec-
ond, from the perspective of sharpness, all three branches tend to pro-
duce smoother intermediate results for downstream instance segmen-
tation tasks. This also matches the task requirements, as segmentation 
prefers spatial consistency and avoids discontinuities or jagged edges. 
Furthermore, the up-then-down branch enhances the feature-domain 
transformation by coarsely reconstructing the original frame, making 
the FST module aware of pixel-domain content, as illustrated in Fig. 15. 

4.4.6.  Robustness analysis
The proposed TransVFC framework is evaluated on the video in-

stance segmentation task under two types of degradation: low-light and 
Gaussian noise. For the low-light scenario, following the existing ap-
proach [39], we map the videos to the YCbCr space, reduce the Y chan-
nel (0.3×), and then convert them back to the RGB space. For the Gaus-
sian noise scenario, we follow [40] and add Gaussian noise with 𝜎 = 25. 
As shown by the experimental results in Fig. 16, our method maintains 
SOTA rate-task performance under low-light conditions. When Gaus-
sian noise is introduced in the pixel domain, the bitrate of all meth-
ods increases significantly. Notably, HVS-oriented VTM and DCVC-DC 

Fig. 16. Rate-task performance of video instance segmentation in low-light and 
Gaussian noise scenarios. The proposed TransVFC performs well under low-light 
scenarios but is less effective when facing pixel-domain noise.

Table 5 
Ablation study on the proposed components in the video feature codec. 

Models
 Scheme-based  Perception  Perception

BD-Rate (%)↓ inter-prediction  condition  loss
 Model 1  7  3  3  +11.37
 Model 2  3  7  3  +13.85
 Model 3  3  3  7  +36.92
 Model 4  3  7  7  +40.18
 Model 5  7  7  7  +46.71

can effectively suppress and filter such pixel-domain noise, and the 
reconstructed frames are mostly denoised during compression, result-
ing in task performance that even surpasses that of the uncompressed 
and noisy input. In contrast, our feature-compression-based method per-
forms worse in this case, as pixel-domain noise harms the efficiency of 
feature compression. Addressing this limitation will be one of the direc-
tions of our future work.

4.5.  Ablation study

Ablation experiments are conducted on the video instance segmen-
tation task and the CrossVIS [33] model.

4.5.1.  Ablation on video feature Codec
To verify the effectiveness of the proposed scheme-based inter-

prediction, the proposed motion estimation and motion compensation 
modules are replaced with the existing deformable-convolution-based 
approach [20]; this model, which is represented as Model 1 in Table 5, 
results in an 11.37% average bitrate increase. To verify the effective-
ness of the perception conditions, we retain the framework structure 
but do not use 𝐶𝑒𝑛𝑐 and 𝐶𝑑𝑒𝑐 as conditions, named Model 2. It is demon-
strated that reconstructing video features without the conditions causes 
a 13.85% bitrate increase. Furthermore, the high-level perception loss 
𝐷𝑝 is removed in Model 3, resulting in a 36.92% bitrate increase. The re-
sult of Model 4 indicates that introducing high-level perception in both 
the conditional coding process and the loss function can significantly in-
crease the rate-task performance (40.18% in total). Additionally, when 
both scheme-based inter-prediction and perception-guided conditional 
coding modules are removed (Model 5), simplifying the codec to a 
structure similar to FVC [20] with deformable-convolution-based inter-
prediction and residual coding, the bitrate increases by 46.71%.

4.5.2.  Ablation on feature space transform module
To verify the function of each branch contained in the FST mod-

ule, we remove the up-then-down branch (Model 6), the down-then-up 
branch (Model 7), and both branches (Model 8), as shown in Table 6. 
The experimental results demonstrate that each branch plays a signifi-
cant role in the quality of the feature space transformation.
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Table 6 
Ablation study on the proposed FST module. 
 Models  Bottleneck-resblock  Down-then-up  Up-then-down  BD-Rate(%)↓
 Model 6  3  3  7  +2.83
 Model 7  3  7  3  +2.69
 Model 8  3  7  7  +5.69

Table 7 
Ablation study on different approaches in ATC paradigm. “3” means optimized 
and “7” means frozen.

Models Codec Task BD-Rate(%)↓
 Optimzed  GPU mem  Training time
 params  (GiB)  per step (s)

 Model 9  3  7 −6.33  22.4M  19.3(+12.9%)  1.430(+14.1%)
 Model 10  7  3 −7.16  37.4M  18.6(+8.8%)  1.374(+9.7%)
 Ours  7  7  0  4.3M  17.1  1.253

Additionally, we conduct an ablation study on the complexity of 
the FST module. We roughly double the number of parameters of the 
FST. The number of parameters in FST increases from 4.30M to 5.92M 
(+37%), and the MACs per pixel rise from 0.14M to 0.26M (+86%). 
The FST further reduces the BD-Rate by only 2.42%. We also roughly 
reduce the number of res-blocks. The number of parameters is reduced 
to 3.53M and MACs per pixel reduce to 0.12M. The BD-Rate increases 
by 5.60%. This finding shows that the current structure is appropriate 
since greater complexity results in only a limited BD-Rate reduction.

4.5.3.  Comparison among different approaches in ATC paradigm
Other ATC-based VCM pipelines are implemented based on 

TransVFC, as detailed in Table 7. Referring to [12–14], we fine-tune 
either the upstream video feature codec (Model 9) or the downstream 
task network (Model 10) instead of the FST module. The experimen-
tal results indicate that training either the upstream or the downstream 
network leads to additional bitrate savings. However, this comes at the 
cost of needing to optimize more parameters, consuming more computa-
tional resources and training time. Benefiting from the FST module, our 
approach uses fewer computational resources and avoids redeploying 
the upstream video feature codec or downstream task networks, offer-
ing better scalability.

4.5.4.  Influence on I-frame Codec
The proposed TransVFC directly uses the feature of the first loss-

less frame and calculates the bpp value of its original I-frame jpeg file. 
Additionally, our experiments show that introducing x265 for I-frame 
compression causes a 5.10% bitrate increase.

5.  Conclusion

We propose a TransVFC framework. It offers a scalable solution for 
multitask VCM scenarios and eliminates the need for fine-tuning the 
upstream codec and the downstream machine vision tasks. We devise 
a novel neural-based video feature codec to achieve continuous feature 
compression; this method incorporates a scheme-based inter-prediction 
module for feature-domain temporal redundancy squeezing and em-
ploys perception-guided conditional coding to make the features bet-
ter align with machine perception. We designe an FST module to effec-
tively transfer the intermediate features to multiple downstream tasks. 
Experiments are conducted on three downstream machine vision tasks 
at different granularities, demonstrating that TransVFC delivers promis-
ing compression efficiency and scalability.

Despite these promising results, our approach has limitations. Its per-
formance tends to decrease in low-bitrate scenarios. This decrease may 
stem from inter-prediction challenges when addressing low-quality fea-
tures, which introduces cumulative error in the feature domain and af-
fects the overall rate-task performance. In addition, our method exhibits 

limited robustness when confronted with Gaussian noise in the pixel do-
main. Moreover, a gap remains between our framework and real-time 
systems such as FFmpeg [37]. In future work, we plan to increase the 
performance of our method under low-bitrate constraints, reduce its 
coding latency, explore new prior utilization and feature fusion strate-
gies, improve robustness on degraded input video, and incorporate a 
variable-bitrate mechanism.

We hope that our approach can inspire advancements in video fea-
ture compression for multitask scenarios and contribute to the develop-
ment of ATC-based VCM methods.
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