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Abstract. Image compression is to compress image data without com-
promising human vision feeling. However, the information loss through
the image compression process may influence the following machine vision
tasks, such as object detection and semantic segmentation. How to jointly
consider the human vision and the machine vision to compress images for
human and machine vision tasks is still an open problem. In this paper,
we provide a multi-task framework for image compression and semantic
segmentation. More specifically, an end-to-end mutual enhancement net-
work is designed to efficiently compress the given image, and simultane-
ously segment the semantic information. Firstly, a uniform feature learn-
ing strategy is adopted to jointly learn the features for image compres-
sion and semantic segmentation in the encoder. Moreover, a multi-scale
aggregation module in the encoder is employed to enhance the semantic
features. Then, by transmitting the quantified features, both the decom-
pressed image features and the learned semantic features can be recon-
structed. Finally, we decode this information for the image compression
task and the semantic segmentation task. On one hand, we can utilize the
decompressed semantic features to implement semantic segmentation in
the decoder. On the other hand, the quality of the decompressed image
can be further improved depending on the obtained semantic segmentation
map. Experimental results prove that our framework is effective to simul-
taneously support image compression and semantic segmentation, both in
the subjective and objective evaluation.
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1 Introduction

Nowadays, a large number of image/video contents are produced and transmitted
to the Internet every day. Reported from Cisco in 2018, Machine-to-Machine
applications will occupy the greatest usage of Internet video traffic over the next
following years. Moreover, machine learning algorithms tend to handle more
contents directly instead of only by human perception. It is critical to establish
the information that can be processed both by machine intelligence applications
and human perception. Therefore, how to support the hybrid human-machine
intelligence applications within the limited bandwidth is eager to be solved.

Recently, with the rapid development of deep learning, some learning-based
compression methods [1-4] have been proposed. However, these methods are
justly driven by the Rate-Distortion cost serving for the human perception, not
compatible with the high-level machine vision tasks. Besides, when facing big
data and high-level analysis, these methods are still questionable. Therefore, to
interact the data compression with the machine intelligent analytics, a new video
codec called VCM (Video Coding for Machine) [5] is organized which provides
compression for machine vision as well as human-machine hybrid vision.

In this paper, we propose an end-to-end mutual enhancement network toward
image compression and semantic segmentation, which not only makes the com-
pression framework to be compatible with the semantic segmentation but also
achieves the mutual enhancement to each other. The encoder consists of a base
network and a multi-scale aggregation module. In particular, the multi-scale
aggregation module is able to enhance the semantic features by suppressing
the effect of the quantization. The decoder decompresses the latent represen-
tation obtained from the compression branch and the semantic branch, and
obtains the decompressed image and the semantic segmentation map respec-
tively. Then the enhancement module is utilized to enhance the quality of the
decompressed image via the obtained semantic segmentation map. Our method
is able to achieve mutual enhancement for both image compression and semantic
segmentation tasks. Experimental results show that the proposed method can
obtain improved decompressed image and semantic segmentation map.

In summary, the contributions of this paper are as follows:

(1) We propose a unified framework that integrates image compression with
semantic segmentation to achieve mutual enhancement.

(2) We design a multi-scale aggregation module to suppress the impact of quan-
tization in the encoder, which aims to enhance semantic features.

(3) We construct a post-enhancement module to improve the quality of the
decompressed images by using the decompressed semantic segmentation
map in the decoder.

2 Related Works

In this section, we briefly review some related works about learning-based
image/video compression, especially several works in response to VCM.
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2.1 Learning-Based Compression

Recently, lots of learning-based image/video compression methods are pro-
posed [6]. In general, these methods can be classified into two categories based
on the coding architecture. The first is to design the deep embedded modules in
the traditional hybrid coding framework, and the second is the end-to-end deep
compression framework.

Deep embedded modules aim to design an optimal network to replace the
key parts in the traditional coding framework, such as in-loop filter [7], intra-
prediction [8], inter-prediction [9], entropy coding [10], transform [11] and quanti-
zation [12]. For example, [7] proposed a post-processing learning-based method to
enhance the decompressed image, instead of the in-loop filter. An intra-prediction
convolutional neural network (IPCNN) was proposed in [8]. [9] utilized spa-
tial adjacent pixels and temporal display order as additional inputs of the con-
structed CNN model to implement the dual prediction of video streaming. In
addition, [12] proposed a fast quantization strategy of HEVC based on CNN.

The end-to-end compression architecture research starts from [1], which con-
sists of nonlinear analysis transform, uniform quantizer and nonlinear synthesis
transform. Then, many end-to-end compression methods are proposed to fur-
ther improve compression performance. An end-to-end trainable image compres-
sion model based on variational autoencoder [2] was designed, where a hyper-
prior potential representation was incorporated for efficiently capturing spatial
dependencies. A context-adaptive entropy model that can be used for the RD
optimization in the end-to-end compression architecture [3]. Furthermore, [4]
introduced the discrete Gaussian mixture likelihood to parameterize the distri-
bution of latent code and reduced the number of coding bits required. Some
latest works have achieved higher compression efficiency than that of the VVC
(Versatile Video Coding) [13] or HEVC (High Efficiency Video Coding) [14].

2.2 Video Coding for Machines

Traditional video coding frameworks are optimized for HVS (Human Visual
System). However, with the development of AI technology, a great amount of
image/video is being analyzed by machines. Hence, the target of image/video
coding is not only optimized for human vision but also machine vision. Toward
collaborative compression and intelligent analytics, a new codec called VCM is
proposed as the next-generation video codec, which attempts to bridge the gap
between feature coding for machine vision and video coding for human vision.
In response to VCM, some researchers try to integrate machine vision tasks
with image compression as a uniform framework. In [15], a hybrid resolution cod-
ing framework based on a reference-based DCNN was proposed to jointly solve
the problem of the interference between the resolution loss and the compression
artifacts. Similarly, an end-to-end restoration-reconstruction deep neural net-
work (RR-DNCNN) [16] based on degradation sensing technology was proposed
to answer the degradation problem caused by compression and sub-sampling
due to various artifacts brought by compression to the super-resolution task.
Besides, some interesting works which try to combine image compression with
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high-level machine vision tasks have attracted various of attention. A frame-
work called DSSLIC was proposed in [17], which combines the semantic map,
coarse representation of the input image, and residuals of the input image in
hierarchical coding, which can obtain a good compression reconstruction image
and simultaneously facilitate other compression related computer vision tasks.
A semantically structured image coding (SSIC) [18] framework was designed
to generate a semantically structured bitstream (SSB), where each part of the
bitstream represents a specific object, which can be directly used for various
visual tasks. [19] proposed a encoder-decoder architecture that makes an image
compression framework to support semantic segmentation. So far, the study on
the relation between suitable compressed representations and the effectiveness
of machine vision algorithms has been an active and fast-growing research area,
how to standardize a bitstream format to enable both image compression and
machine vision tasks will be worth noticing.

3 Proposed Method

The proposed method aims to achieve mutual enhancement for both the image
compression task and the semantic segmentation task. Figure 1 shows the frame-
work of our method which basically is an encoder-decoder structure. In the fol-
lowing, we will give detailed introductions.
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Fig. 1. The overall framework of our proposed method. “Q” denotes quantization.
“AE” and “AD” mean the arithmetic encoder and decoder respectively.

3.1 Encoder

The encoder is consisted of two parts which correspond to compression branch
and semantic segmentation branch respectively. One part is called base net-
work. As shown in Fig. 1, several cascaded convolution layers are adopted to
characterize the correlation between neighboring pixels, which is consistent with
the hierarchical statistical properties of natural images. Here, to optimize the
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features for image compression, the generalized divisive normalization (GDN)
transform [1] is utilized to transfer the pixel-domain feature into a divisive nor-
malization space.

An aggregation module is designed to learn and enhance the semantic fea-
tures, which is shown in Fig. 2. It is worth noticing that all of the learned features
should be quantified in our unified framework, even for the semantic features.
Therefore, one key issue is to suppress the impact of the quantization. We try to
explore some abundant features to enhance the semantic representations. More
precisely, the hierarchical features from different layers of the base network are
applied to learning the high-level semantic feature. For instance, fi which is
from the interlayer of the base network is added into the structure feature f;* by
a hierarchical feature fusion block (HFFB). The operation can be represented as
follows:

fé+1 = Wj+1 X fé + f;az =n,n— ]-7 ceey ]-7.7 = 1a2a sy 1, (1)

where, f! denotes the learned features from the i-layer of base network, f; is
the enhanced feature from the previous layer, while fy1 = fI. W, is the learnable
parameter in the current layer.
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Fig. 2. The aggregation module of our proposed method, “IGDN” represents inverse
GDNJ20], “HFFB” represents hierarchical feature fusion block.

In the HFFB block, the feature fi is first transformed to the pixel-domain
by an IGDN layer associated with the GDN layer in the base network, and then
the transferred feature is added to the previous fused feature f; To be noted,
each HFFB block corresponds to the hierarchical features from different layers in
the base network. This operation aims to suppress the additive noise by increas-
ing the weight of the feature. To further improve the representation of semantic
information, the special convolution layer non-bottleneck-1D (non-bt-1D) [21]
is integrated into the HFFB blocks. Then, the features can be stretched and
transformed into one-dimensional representation, which is more conducive to
the subsequent pixel-level semantic classification and thus enhances the perfor-
mance of the semantic segmentation task. Finally, the semantic feature fI' can be
obtained. For the learned feature f;' and f;/, a quantization method depending
on the additive noise and entropy encoding method [2] are applied to convert the
learned feature into a piecewise bitstream. The bitstream is reverted to feature
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by entropy decoding and sent to the decoder. It is worth mentioning that quanti-
zation operation in the traditional methods is to transform continuous data into
discrete data to reduce the amount of data. So quantization operation is unde-
sirable. However, learning-based methods depend on end-to-end optimization
with gradient-based techniques. Many methods have made some contribution to
solve this problem. Here, we follow [1] using additive noise. Specifically, we add
uniform noise to approximate quantization operation in the training stage and
we round it directly in the inference stage.

3.2 Decoder

As shown in Fig. 1, the received features are firstly divided into two parts in
the decoder, including the semantic feature Z; and the compression feature Z,.
Correspondingly, the divided features Z; and Z, are fed into different decode
branches respectively. To obtain the semantic image, several deconvolution layers
and non-bottleneck-1D (non-bt-1D) layers are utilized as a semantic decoder to
decompress Z;. The non-bt-1D layers can gather more context from the received
features, and deconvolution layers can up-sample the features to match the reso-
lution of the input image. For the image decompression, we apply inverse opera-
tions on Z, to reconstruct image &, which are corresponding to the base network
in the encoder. Hence, the image decoder consists of several deconvolution layers
and IGDN layers.

Considering all the factors in our framework, the loss function of the whole
framework can be written as follows:

L=AD+R+CE, 2)

where A is one hyper parameter, D represents the distortion between the input
image and the reconstruction image, R denotes the bitrate which is approximated
by using the entropy of the corresponding latent representations zZ, C'E represents
the cross entropy of semantic segmentation map s and the ground truth. In
general, CE = %ZZ—ZSL siclog(pic). M is the number of categories, s;.
has value 0 or 1. If the predicted category of the sample i is the same as the
ground truth (equal to ¢), s;c should be 1, otherwise 0. p;. indicates the predicted
probability that the sample ¢ belongs to the category c.

3.3 Enhancement Module

Motivated by that semantic segmentation is able to recognize the category of
each pixel, we take advantage of the semantic information to enhance the decom-
pressed images. The semantic map where each pixel is labeled by category infor-
mation can provide clearer spatial structure information for human to under-
stand or intelligent analytics.

As shown in Fig. 3, we propose a post-enhancement module to improve the
details of the decompressed image . The obtained semantic segmentation map
s is fed into the post-enhancement module to learn the structure information.
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First, the max pooling and the average pooling operations are separately con-
ducted along the channel dimension, whose formulation is as follows:

s, = [Maa(s), Avg(s)), (3)

here, [-,-] represents the concatenation operation. Then, the weights of spatial
structure features are obtained by a convolution layer and a sigmoid activation
function. Finally, the weights are utilized to multiply by the semantic features
which are learned on the semantic segmentation map s, and the output is the
learned spatial structure features. The process can be represented as follows,

se = WoW 1 WoWs0o(ss), (4)

here, Wy, Wy, Ws, W3 represent convolution operations and o denotes sigmoid
activation function. To embed the learned spatial structure information into the
decompressed image Z. & is mapped to the feature space by a shadow convolu-
tional layer. Then, some residual blocks are grouped as a frequency filter to learn
high-frequency information Z,. Finally, we concatenate s. and Z,  to embed the
spatial structure information and obtain the final reconstruction image Z..
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Fig. 3. The enhancement module in our proposed method. “RB” represents the residual
block, “EB” refers to the enhancement block.

4 Experiments

In this section, we conduct a series of experiments to evaluate the performance
of our proposed method. In our experiments, the widely used Cityscapes dataset
is adopted. The Clityscapes dataset has 19 semantic labels, all 2,974 RGB images
are resized to 512 x 1024. And the test dataset for the compression evaluation is
constructed with 24 images from the Kodak image dataset [22]. For the semantic
segmentation evaluation, we adopt the validation set and test set from Cityscapes
dataset at the resolution of 1024 x 2048. The proposed framework is trained in
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the end-to-end way and uses different A values (256, 512, 1024, 2048, 4096, 6144,
8192) to control the quantization step. Adam optimizer [23] with the learn-
ing rate of 0.0001 is used, which is fixed in the first 2,000,000 iterations but
decreased to 0.00001 in the next 100,000 iterations. All the experiments are
conducted on the NVIDIA RTX 3090 with 24 GB memory.

To objectively evaluate the compression performance of our proposed
method, we conduct comparable experiments with the following previous works
[17,19]. Moreover, we use Multiscale Structural Similarity (MS-SSIM) and the
Peak Signal to Noise Ratio (PSNR) between the original and the decompressed
images as evaluation indicators. A larger MS-SSIM or PSNR means higher
fidelity. Note that MS-SSIM is applied on RGB channels and averaged over
the entire test set.

PSNR on Kodak MS-SSIM on Kodak
T T 9 r T
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1 =
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Fig. 4. Rate-distortion curves of different image compression methods using the PSNR
metric and MS-SSIM metric on Kodak [22].

4.1 Results on Image Compression

We compare several widely used image compression algorithms [1,2,24-26] and
two hybrid compression methods [17,19] with our proposed method. The per-
formances are shown in the Fig.4(a) and 4(b). The curves report the PSNR
and MS-SSIM at different bitrates respectively, where bpp means bits-per-pixel,
referring to the averaged bitrate for each pixel.

As shown in Fig. 4(a), peak signal-to-noise ratio (PSNR) is adopted as the
quality metric. It is obvious that the proposed method is better than the tradi-
tional methods JPEG [24], JPEG2000 [25] and the classical end-to-end learning-
based method END2END [1], HYPERPRIOR [2]. Moverover, BPG [26] has
achieved the state-of-the-art performance in traditional image compression meth-
ods, our method achieves comparable performance at low bitrates and achieves
better performance apparently at high bitrates over BPG. Besides that, we also
compare with the semantic-based image compression methods EDMS [19] and
DSSILC [17], which are proposed recently and have excellent performance. As
shown in Fig.4(a), our method is apparently superior to both of them on PSNR
quality metric.
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As shown in Fig. 4(b), in order to clearly show the advantages of our method
over other methods, we also carry out the experiments under multiscale struc-
tural similarity (MS-SSIM) quality metric. By comparing the curves in Fig. 4(b),
it can be found that our method has the best performance of all comparable
methods. Especially, the results of the proposed method have huge advantages
over BPG in terms of the MS-SSIM quality metric while just can be comparable
under the PSNR quality metric. Then, analyzing and comparing Fig. 4(a) and
4(b) together can be easily find out that the learning-based methods perform
better than traditional methods under the MS-SSIM metric.

Moreover, the compression branch of our method has a similar structure
with HYPERPRIOR [2]. When it is integrated into our method, the perfor-
mance of our method is better than HYPERPRIOR. It shows that the semantic
embedding method is reliable and can be used to improve the reconstruction
effectively. Our enhancement module can improve decompressed image by using
the semantic information extracting from semantic segmentation map.

e Z s X 2

JPEG(0.51/28.5/0.94)  JPEG2000(0.51/31.8/0.96)  BPG(0.51/32.2/0.96)

kodim21 END2END(0.57/31.1/0.97) HYPERPRIOR(0.55/32.5/0.98) OURS(0.53/32.7/0.98)

Fig. 5. Visualization of decompressed images “kodim21.png” from Kodak [22] and
its ground truth. The numbers on the bottom of the images mean the value of
(Bpp/PSNR/MS-SSIM).

To display the performance of our method intuitively, We exhibit the decom-
pressed image of the proposed method and some competitive methods with sim-
ilar bitrate in Fig.5. A visual example of kodim21 from the Kodak dataset is
provided. Our method obtains the best image quality at a similar bitrate. When
looking carefully at the selected area, we can see that the wave of the sea in
the images through JPEG and JPEG2000 methods are blurred. While the rocks
in the selected area of the two methods have lots of noise and block artifacts.
The more excellent traditional compression method at present BPG and the
classical learning-based compression methods END2END, HYPERPRIOR are
slightly better than JPEG and JPEG2000, but there are still some visible flaws.
The image decompressed by our method is relatively clear in texture and color.

4.2 Results on Semantic Segmentation

In our method, the semantic segmentation branch can be compatible with many
outstanding semantic segmentation networks. In this paper, ERFNet [21] is
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Table 1. Results of our four semantic segmentation architectures on the Cityscapes
Evaluation set. Per-class IoU(%) and mean classes IoU(%).

Methods | Roa
97.5
97.5
97.2

97.6

Sid

80.2
81.4
80.6
81.2

Bui

90.4
91.1
90.1
90.8

Wal
46.5
49.1
51.4
46.2

Fen
51.9
51.9
52.6
51.2

Pol

61.1
62.7
59.4
62.8

TLi
65.5
64.8
63.2
63.9

TSi
72.5
74.4
72.1
73.8

Ter

59.9
61.9
61.2
59.9

Ped
75.9
774
75.5
76.9

Veg
91.2
91.5
91.1
91.1

Sky
93.8
94.1
92.2
93.5

Rid
55.1
57.5
55.3

56.3

Car
93.1
92.9
92.2
93.2

Bus
79.7
75.2
75.3
79.2

Tra
67.9
70.7
63.5
4.7

Mot
46.7
41.7
44.4
43.2

Bic

70.6
71.9
70.3
70.9

Cla-IoU
72.1
72.8
71.2
72.5

Baseline
B+A
B+Q
B+Q+A

72.5
72.8
66.5
71.2

integrated into our semantic segmentation branch. Table 1 shows the segmen-
tation results on 19 classes of the Clityscapes evaluation set under four condi-
tions based on ERFNet, which are no quantization operation, only quantization
operation, quantization operation plus aggregation module and only aggrega-
tion module. To conduct the segmentation experiments in four conditions, we
correspondingly construct four models. We defined the original architecture of
ERFNet in the semantic segmentation branch, without quantization operation
and our aggregation module as baseline. Then over the architecture of base-
line, only quantization is operated on the semantic segmentation branch (we
called it B+Q) and only aggregation module is applied on the semantic seg-
mentation branch (we called it B+A). The last model is our proposed model
with quantization operation and aggregation module (we called it B+Q+A). As
shown in Table 1, comparing baseline with B+Q), it is found that nearly 1% mean
classes IoU (Cla-IoU) is declined because of quantization operation. Compared
to the model B+Q, by using our aggregation module (B+Q+A), the accuracy
is improved and better than baseline in the case of quantization operation. To
verify the effectiveness of this aggregation module, we also compare this B+A
model with the original unquantized baseline architecture. It turns out that
the accuracy of our method is improved than before. Therefore, our multi-scale
aggregation module is effective and the multi-scale feature information from the
base network could suppress the impact of the quantization operation.

Table 2. Comparable results on Clityscapes Test sets.

Methods Cla-IoU(%) | Cat-IoU(%) | Methods Cla-IoU(%) | Cat-IoU(%)
RefineNet [27] 73.6 87.9 Dilation [28] | 67.1 86.5
Adelaide-cntxt [29] |71.6 87.3 DPN [30] 66.8 86.0
LRR-4x [31] 69.7 88.2 B+A 70.8 88.1
Deeplabv2-CRF [32] | 70.4 86.4 B+Q+A 70.5 88.0

Table2 shows the semantic segmentation results of several comparable

approaches. These results are obtained from the Cityscapes Test server. Baseline
with the aggregation module (B+A) achieves a 70.8% mean Classes IoU (Cla-
ToU) and an 88.1% mean Category IoU (Cat-IoU). The B+Q+A model achieves
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a 70.5% Cla-IoU and an 88.0% Cat-IoU. Cla-IoU is improved compared to LRR-
4x [31], Deeplabv2-CRF [32], Dilationl0 [28] and DPN [30], and Cat-IoU is
improved compared to RefineNet [27], Adelaide-cntxt [29], Deeplabv2-CRF [32],
Dilation10 [28] and DPN [30]. It is proved that the aggregation module extracts
hierarchical features from different layers in base network could not only reduce
the impact of quantization operation but also improve the quality of seman-
tic segmentation map. In general, benefiting from the aggregation module, the
semantic segmentation branch in our proposed method is much more competi-
tive.

5 Conclusion

To achieve mutual enhancement for image compression and semantic segmen-
tation tasks, we propose a novel end-to-end mutual enhancement network. The
whole framework of our method which is based on an encoder-decoder struc-
ture contains several creative designs. A multi-scale aggregation module in the
encoder is designed to improve the accuracy of the semantic segmentation and an
enhancement module after the decoder is designed to enhance the reconstruction
of the compression. The experimental results show that our method is effective
and achieves mutual enhancement for both image compression and semantic
segmentation. In the future, we would expand this framework to support more
machine intelligent tasks than semantic segmentation.
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