
1754 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 6, JUNE 2019

A Depth-Bin-Based Graphical Model for Fast View
Synthesis Distortion Estimation

Jian Jin , Jie Liang , Senior Member, IEEE, Yao Zhao , Senior Member, IEEE,

Chunyu Lin , Chao Yao, and Anhong Wang

Abstract— During 3-D video communication, transmission
errors, such as packet loss, could happen to the texture and
depth sequences. View synthesis distortion will be generated
when these sequences are used to synthesize virtual views
according to the depth-image-based rendering method. A depth-
value-based graphical model (DVGM) has been employed to
achieve the accurate packet-loss-caused view synthesis distortion
estimation (VSDE). However, the DVGM models the complicated
view synthesis processes at depth-value level, which costs too
much computation and is difficult to be applied in practice. In this
paper, a depth-bin-based graphical model (DBGM) is developed,
in which the complicated view synthesis processes are modeled
at depth-bin level so that it can be used for the fast VSDE with
1-D parallel camera configuration. To this end, several depth
values are fused into one depth bin, and a depth-bin-oriented
rule is developed to handle the warping competition process.
Then, the properties of the depth bin are analyzed and utilized
to form the DBGM. Finally, a conversion algorithm is developed
to convert the per-pixel input depth value probability distribution
into the depth-bin format. Experimental results verify that our
proposed method is 8–32 × faster and requires 17%–60% less
memory than the DVGM, with exactly the same accuracy.

Index Terms— 3-D video coding, depth-image-based render-
ing (DIBR), distortion estimation, graphical model.

I. INTRODUCTION

A. Motivation

3 -D VIDEO technologies have been widely studied recent
years as they can provide immersive 3-D experience. 3-D
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videos are usually represented by Multi-view Videos plus
Depth (MVD) [1] format, where the color videos of the
3-D scenarios are captured by several cameras at different
locations, and the associated depth videos are obtained by
estimation algorithms [2] or directly captured by depth cam-
eras [3]. By transmitting the MVD data, a virtual view between
any two captured views can be rendered in the decoder side
utilizing the Depth Image-based Rendering (DIBR) technol-
ogy [4], which has been adopted in the Moving Picture
Experts Group (MPEG) View Synthesis Reference Software
(VSRS) [5].

In contrast to the traditional 2-D video (single-view video),
to ensure 3-D real-time visualization at the decoder side, MVD
usually requires more transmission bandwidth. In other words,
when the transmission bandwidth is restricted, network con-
gestion will be more common in 3-D video transmission and
will further cause transmission impairments, such as packet
loss. Due to the predictive nature of the encoder, losing a part
of a frame can cause error propagation to subsequent frames.
This scenario not only introduces errors to the transmitted
texture and depth images, but also affects the quality of the
synthesized view when they are used as references. Besides,
compared with the traditional packet-loss-induced distortion in
single-view videos, where only color information is changed
during 2-D video reconstruction, the distortion in depth videos
may create excessive disparity error, which could lead to
unacceptable geometric distortion in the synthesized virtual
view.

Therefore, in 3-D video system, it is crucial to develop an
accurate algorithm for the encoder to estimate the packet-loss-
induced distortion of the synthesized view at the decoder.
It may help designing various error-resilient tools at the
encoder to improve the quality of 3-D video. In 2-D video
transmission, the well known recursive optimal per-pixel esti-
mate (ROPE) method [6] is capable of estimating packet-
loss-induced distortion by estimating the first and second
moments of each decoded pixel during encoding. Inspired by
this, a ROPE-like scheme is developed in [7] to estimate the
decoder-side distortion of the synthesized view from encoder,
based on a depth-value-based graphical model (DVGM) that
can handle the complex warping competition during view
synthesis process. However, the main drawbacks of the DVGM
are its high computational and memory costs, making it
difficult to be used in real-time applications. Therefore, a more
efficient view synthesis distortion estimation (VSDE) model is
desired. This is the main motivation of the paper.

1051-8215 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on February 17,2023 at 07:37:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4250-1519
https://orcid.org/0000-0003-3003-4343
https://orcid.org/0000-0002-8581-9554
https://orcid.org/0000-0003-2847-0349
https://orcid.org/0000-0001-5413-0490


JIN et al.: DEPTH-BIN-BASED GRAPHICAL MODEL FOR FAST VIEW SYNTHESIS DISTORTION ESTIMATION 1755

B. Related Works

1) VSRS: Various view synthesis algorithms have been
developed in [8]–[11]. In particular, in [11], a region-aware
3-D warping for the DIBR is proposed, which exploits the
characteristics of different regions in the reference views
and achieves significant computation saving with little degra-
dation in the synthesis quality. However, the most widely
used algorithms are those in the VSRS3.5 [5], which
have superior performance on synthesis quality especially
when the depth sequences are corrupted as studied in [11].
There are two modes in VSRS3.5. The 1-D parallel mode
is designed for scenes captured by parallel camera array
with only horizontal disparity, while the general mode has
no restriction on the cameras array. Generally, 1-D par-
allel mode is more popular in 3-D video research and
applications.

The framework of VSRS3.5 with 1-D parallel mode mainly
contains the warping and blending stages. For the warping
stage, pixels from the original views are projected to the
virtual view, which includes the following steps: i) boundary
detecting and boundary aware splatting are first executed in the
depth map; ii) forward warping is then carried out. During the
forward warping step, the mapping competition could happen,
that is, several pixels in the reference views are mapped to
the same point in the virtual view. To handle this problem,
the depth-value-oriented rule is used in VSRS3.5, where the
reference pixel with the largest depth value (closest to the
camera) is selected as the winner. After that, the blending stage
is carried out, which includes two steps: i) the two warped
views from warping stage are firstly blended into one, which
contains holes; ii) all the holes are filled by an inpainting
operation. By utilizing VSRS3.5, the decoder can obtain the
virtual view at arbitrary location between two neighboring
reference views.

2) Source-Coding-Caused VSDE: Various methods have
been developed to estimate the view synthesis distortion
caused by source coding. In [12], a region-based synthe-
sized view distortion estimation algorithm was proposed for
depth map coding. In [13], a linear model-based virtual view
distortion estimation method is developed and employed to
optimally select the skipping mode for depth map coding.
In [14], for the joint bit allocation between texture and depth
sequences in 3-D video coding, a model-based view distortion
estimation algorithm is developed. In [15], the structured
similarity [16] is used to measure the subjective quality of
the synthesized view, and to optimize the codec. In [17],
the quantization-caused distortion is assumed to be a zero-
mean white noise [14], and the distortion in the synthesized
view is decomposed as the sum of texture image coding
distortion and depth image coding distortion, which could
estimate the virtual view distortion accurately. However, this
method also has high computational complexity. To make a
good trade-off between the actuary and efficiency, a method
is developed in [18] to achieve a virtual view PSNR estimation
directly without rendering virtual views. Besides, this method
is also friendly for parallel implementation due to its row-by-
row processing order.

3) Transmission-Error-Caused VSDE: The algorithms
above only considered the impact of source coding on the
synthesized view rather than the impact of transmission
error. In [19], a recursive distortion model is developed for
multi-view video transmission over lossy packet-switched
networks, which estimates the expected channel-induced
distortion at both the frame and sequence levels. However,
this algorithm does not consider the MVD format. To relate
the disparity errors caused by packet loss in the depth maps to
the distortion contribution in the synthesized view, a quadratic
model is proposed in [20]. In [21]–[23], to make the reference
frame selection and optimize the quantization parameter,
a quadratic-model-based distortion estimation is developed
and used at the encoder. However, The overall transmission
distortion estimation framework used in [21]–[23] is the
block-based recursive approach and its estimation accuracy
is quite limited. In [24], to improve error resilience of
MVD, an end-to-end distortion model for MVD-based 3-D
video transmission is proposed for rate-distortion optimized
mode selection, where both the end-to-end distortions in
the rendered view and the compressed texture video are
characterized. Then, the view synthesis prediction is also
considered in [25]. Note that it only focuses on modeling
the right reference view. However, it still ignores some
details in the complex view synthesis process. Therefore, its
estimation accuracy is not optimal. Another drawback is its
high computational complexity.

In [7], a depth-value-based graphical model (DVGM) is
developed to capture the complicated warping competition
during view synthesis process. Besides, a recursive optimal
distribution estimation (RODE) approach is developed based
on the well known ROPE to generate per-pixel texture and
depth probability distributions. By integrating the RODE into
the DVGM, this approach can estimate the packet-loss-induced
3-D video distortion accurately. However, the DVGM is for-
mulated at depth-value level. Generally, depth value changes
within a certain range may not lead to warping error due
to the 3-D warping rounding operation in DIBR. Therefore,
the DVGM is inefficient in describing the complicated view
synthesis process, and can be sped up for a faster VSDE.

C. Contributions of This Paper

In this paper, a novel efficient depth-bin-based graphical
model (DBGM) is presented for 1-D parallel mode, which can
replace the DVGM in [7]. The main contributions are listed
as follows.

• The concept of depth bin is firstly defined. At the same
time, a depth-bin-oriented warping competition rule is
developed.

• The DBGM is developed, which is the first work to for-
mulate the complicated view synthesis process at depth-
bin level to simplify the VSDE.

• The properties of depth bin are studied and utilized to
optimize the DBGM further.

• A conversion of probability distribution between depth
bin and depth value is developed so that it can be used
to integrate the RODE method into the DBGM directly.
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• The DBGM method is 8 to 32 times faster and requires
17% to 60% less memory than the DVGM, with exactly
the same accuracy.

The rest of the paper is organized as follows. Section II
reviews the related techniques on the packet-loss-caused
VSDE algorithm proposed in [7]. Section III details the
proposed model. Section IV presents the experimental results,
and Section V concludes this paper.

II. VSDE ALGORITHM OVERVIEW

In this section, we briefly review the main ideas of the
packet-loss-caused VSDE proposed in [7], which contains the
overall framework of VSDE and the DVGM. The details are
summarized in the appendices.

The framework of VSDE contains two main steps. The first
step is to establish a function to generate the per-pixel expected
distortion in the synthesized view, which is formulated by
Eq. (25) in Appendix. Once the first and second moments
of each synthesized pixel at the receiver are obtained, this
function can be solved. The second step is to represent the
required first and second moments of each pixel in synthesized
view at the receiver with several components, which are
formulated by Eq. (26) and Eq. (27) in Appendix, in which
the distributions of the warped depth pixels are needed.

To generate the distributions of the warped depth pixels,
a depth value-based graphical model (DVGM) was developed
in [7], which contains three main steps. The first step is to
calculate the winning probability of each edge emitting from
reference vertex to warped vertex as formulated in Eq. (28) in
Appendix. Besides, to handel the complex warping competition
scenario, Eq. (28) is implemented with a condition that the
depth value of the winner edge is the largest. The second step
is to sum up all these winning probabilities of edges with
the same starting and ending vertices in order to expresses
the probability of one warped vertex taking the value of one
reference vertex as expressed in Eq. (29) in Appendix. In the
last step, the probability of one warped vertex taking no
value from any reference vertices is calculated in Eq. (30)
in Appendix.

As DVGM assumes that the distribution of random noise is
known, the per-pixel distribution in the reference depth images
can be derived. Finally, the distribution of the synthesized
depth pixel is obtained according to Eq. (29) and Eq. (30).
Hence, the view synthesis distortion is finally estimated.
In fact, the initial per-pixel distribution in both reference
texture and depth images can be derived by the RODE
method. The distribution generated with the RODE depends
on several factors, such as the slice mode selection, packet
loss probability, the error concealment scheme and so on.

There are some drawbacks in the DVGM, which cause
high complexity and large memory storage. In order to obtain
the probability that a warped vertex will take the texture
value from a reference vertex, the winning probability of
each edge emitting from the reference vertex to the warped
vertex is first calculated based on their depth values. Then,
the winning probabilities of all the edges with the same starting
and ending vertices are summed up together. However, all of

these edges describe the same physical event that one reference
vertex will be warped to one reference vertex. Hence, depth-
values-based edge representation is inefficient. Besides, during
winning probability calculation in Eq. (28), a large amount of
information on depth values and locations is needed to be
recorded in advance, which needs large memory. Meanwhile,
the depth value of the winner edge is required to be the largest
during warping competition. Hence, a sorting algorithm is
needed in winning probability calculation in the DVGM, and
these edges are sorted based on their associated depth values,
which is time consuming. In summary, all these disadvantages
in the DVGM are caused by modeling the complicated view
synthesis at the depth-value level.

III. A NOVEL EFFICIENT DEPTH-BIN-BASED

GRAPHICAL MODEL

An important fact in 3-D warping process is that several
depth values could correspond to the same rounded disparity
value due to the rounding operation. This can be represented in
DVGM by multiple edges with different depth values emitting
from reference vertex to warped vertex. This fact has also
been observed and utilized in several video coding papers. For
instance, [26] develops a depth no-synthesis-error (D-NOSE)
model based on this fact, which is used to design depth video
coding. In [27], this fact is utilized to design a quantizer to
represent the physical depth distance with less bits. Different
from [26] and [27], we are the first to use this fact to model
the complicated view synthesis at depth-bin level so that the
complexity and memory consumption of transmission-error-
caused VSDE can be reduced.

In this section, we develop a novel efficient depth-bin-based
graphical model (DBGM), and discuss several main techniques
used in the DBGM. Similar to the DVGM, full pixel precision
of view synthesis is considered in this paper.

A. Depth Bin

As reviewed above in the DVGM, each edge corresponds
to a certain depth value with a floating-point disparity. In 1-D
parallel view synthesis, given the depth value d of a point in
the 3-D space, the disparity of its images in the reference view
and virtual view can be obtained by first using the following
equation in [11]:

δ = f · L · d

255
· ( 1

Znear
− 1

Z f ar
) + f · L

Z f ar
, (1)

where δ is the initial floating-point disparity. Znear and Z f ar

denote the depth range of the physical scene. f is the camera
focal length. L is the distance between virtual view and
reference view. Eq. (1) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ = c1 · d + c2 � D(d),

c1 = f · L

255
· (

1

Znear
− 1

Z f ar
) > 0,

c2 = f · L

Z f ar
> 0,

(2)

where c1 and c2 are positive constant. Besides, c1 is usually
smaller than 1. Therefore, δ could be regarded as a positive
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Fig. 1. Illustration of relationships among depth value d, associated
floating-point disparity D(d), depth bin β and rounded disparity δR . δR0
and δR1 are the neighbored integer rounded disparities.

linear function of d and represented by D(d). Hence, its
inverse function can be written as

d = D−1(δ). (3)

Then, Eq. (2) is rounded to get the integer disparity:

δR = [D(d)] = [c1 · d + c2], (4)

where [·] represents the rounding operation, and δR is the
rounded disparity.

In this paper, we define the set of all the depth values with
the same rounded disparity as a depth bin, which is denoted
as β.

Assuming that the 256 depth values are finally mapped to
N depth bins, N could be expressed as

⎧
⎪⎨

⎪⎩

N = [D(dnear )] − [D(d f ar )] + 1,

dnear = 255,

d f ar = 0,

(5)

The index of depth bin β is from 0 to N − 1.
Hence, there is an one-to-one relationship between the depth

bin β and rounded disparity δR . The 3-D warping rounding
calculation is reformulated as

δR = β + [D(d f ar )] = β + [D(0)], (6)

which will be explained latter in this part.
The relationship between the depth values and their corre-

sponding depth bins can be described by Eq. (7), as shown at
the bottom of the next page, where �·� and �·� are the ceiling
and flooring operations. The details of derivation are given as
follows.

The detailed relationship between the depth values, floating-
point disparities, rounded disparity and depth bin are shown
in Fig. 1, where depth values 0, 1, 2, . . . are mapped to
floating-point disparities D(0), D(1), D(2), . . . After rounding
operation, some neighboring floating-point disparities will
have the same rounded value. Their corresponding depth
values will form a depth bin, e.g., D(0), D(1) and D(2) will

have the same rounded value δR0. Their corresponding depth
values 0, 1 and 2 will form a depth bin with index 0.

Mathematically, to find all the depth values that are included
in the i -th depth bin, we need to find its lower and upper
bounds of depth values, which are denoted as dL ,i and dU,i ,
respectively.

We start from the first depth bin with index 0. The floating-
point disparities will be rounded into δR0 in the range of t0
and t1, where

{
t0 = [D(0)] − 0.5

t1 = [D(0)] + 0.5.
(8)

The corresponding integer boundaries of depth bin with index
0 can be founded from inverse function as follows

{
dL ,0 = �D−1(t0)� = �D−1([D(0)] − 0.5)� = 0

dU,0 = �D−1(t1)� = �D−1([D(0)] + 0.5)�. (9)

For the depth bin with index i(0 ≤ i ≤ N − 2), we have
{

dL ,i = �D−1([D(0)] − 0.5 + i)�
dU,i = �D−1([D(0)] + 0.5 + i)�. (10)

For the last depth bin with index N − 1, we get
{

dL ,N−1 = �D−1([D(0)] − 0.5 + N − 1)�
dU,N−1 = �D−1([D(0)] + 0.5 + N − 1)� = 255.

(11)

Combining Eq. (9) to (11), we can get Eq. (7). Based on this
equation, we can easily find the depth bin index of any depth
value.

B. Depth-Bin-Oriented Warping Competition Rule

During 1-D parallel view synthesis, if two vertices with
different locations in reference are warped to the same vertex
in the warped view, there will be a warping competition
between these two vertices. In the traditional depth-value-
oriented warping competition rule, the vertex with the largest
depth value will be chosen as the winner, which is considered
as belonging to the foreground.

In this subsection, we propose a depth-bin-oriented warping
competition rule, from which the vertex with largest depth
bin is chosen as the winner during warping competition.
Essentially, this proposed rule still chooses the largest depth
value as the winner, because the depth values within the largest
depth bin are always larger than those within a smaller one.
This fact is proved as follows.

Assume two vertices A and B with different locations in
the reference view are warped to the same location in the
warped view. Their depth bin are βA and βB , respectively.
Let the indexes of βA and βB be i and j (i > j ). Let dL ,i

and dU, j respectively denote the smallest depth value (lower
bound) within βA and the largest depth value (upper bound)
within βB . Similarly, as discussed in Eq. (6), we have

{
[D(dL ,i )] = βA + [D(0)],
[D(dU, j )] = βB + [D(0)], (12)

since i > j , we get

[D(dL ,i)] − [D(dU, j )] = βA − βB = i − j > 0. (13)
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Fig. 2. Depth-bin-based graphical model for view synthesis. The vertexes
on the first line are the pixels from left reference view, which will be warped
to the vertexes on the second line of the virtual view. The big arrows are the
bundles. To exhibit the relationship between the bundle and edge, we randomly
highlight and zoom in bundle bi j , which connects vertex Ṽ (i) and Ṽw( j).
We can clearly find bundle bi j includes edge e0

i j to edge es−1
i j , which have

the same starting and ending and represented with black dotted line.

As D(d) is positive linear function with respect to d ,
we always have dL ,i > dU, j . Therefore, the depth values
within a larger depth bin index are always larger than those in a
depth bin with smaller index. Our depth-bin-oriented warping
competition rule still chooses the largest depth value as the
winner. However, in the worst case (warping competition),
256 depth value indexes will be compared in depth-value-
oriented warping competition rule, while less number of depth
bin indexes will be considered in our rule. Therefore, it is more
efficient to use our rule during warping competition.

C. Depth-Bin-Based Graphical Model

In this part, we use the defined depth bin to build a fast
graphical model, which can efficiently capture the interaction
between the vertices and the warping competition operation
during view synthesis.

Different from the DVGM, all the edges (each edge corre-
sponds to a depth value) with the same starting and ending are
grouped into a bundle (each bundle corresponds to a depth bin)
in our model, as shown in Fig. 2. We use different colors to
represent different vertices texture values. Therefore, all the
edges emitting from each vertex in the reference view will
be grouped into several bundles in our proposed model. The
number of bundles used in our model is usually several times
smaller than that of edges used in the DVGM. This can largely
reduce the complexity of the model.

To obtain the probability of one vertex taking the value of
another, instead of calculating the winning probability of each
individual edge first and then summing up the probabilities of
all the edges with the same starting and ending, we can directly
calculate the winning probability of the bundle between these
two vertices.

As shown in Fig. 2, we assume that only Ṽ (1) to Ṽ (n)
are connected to Ṽw(i). The bundle between Ṽ ( j) and Ṽw(i)

and its associated depth bin are denoted as b j i and β(b j i),
respectively. Based on the depth-bin-oriented warping com-
petition rule, when the bundle b j i is the final winner, its
β(b j i) should be the largest. Therefore, all the bundles emitted
from previous vertices Ṽ (z) (z = 1, . . . , j − 1) to Ṽw(i)
with condition β(bzi ) ≥ β(b j i), denoted by a set S3 (which

is smaller than
j−1⋃

z=1
Sz,1 in Eq. (28) in Appendix), should be

abandoned. Similarly, all the bundles emitted from subsequent
vertices Ṽ (z) (z = j + 1, . . . , n) to Ṽw(i) with condition
β(bzi) > β(b j i), denoted by a set S4 (which is smaller than

n⋃

z= j+1
Sz,2 in Eq. (28)) should be abandoned as well. Let

P(b j i ) denote the probability that Ṽ ( j) will be warped to
Ṽw(i) with bundle b j i . The winning probability of bundle b j i

is defined as Pwin(b j i), which can be formulated as

Pwin (b j i) = P(b j i ) ×
∏

z∈S3

(1 − P(bzi )) ×
∏

z∈S4

(1 − P(bzi )).

(14)

In other words, the separated two-step depth-value-based
operations in Eq. (28) and (29) in DVGM are replaced by just
one-step depth-bin-based operations in Eq. (14) in our model.
The complexity can thus be reduced.

As shown in Eq. (6), there is an one-to-one relationship
between depth bin and disparity. Therefore, once the depth bin
of Ṽ ( j) is set as β(c j i), its associated disparity is confirmed
uniquely and Ṽ ( j) will be warped to Ṽw(i) undoubtedly.
In view of this, the probability that Ṽ ( j) will be warped to
Ṽw(i) with bundle b j i is equivalent to the probability that the
depth bin of Ṽ ( j) is set as depth bin β(c j i), which is expressed
as

P(b j i ) � P(β j = β(b j i)), (15)

where β j denotes the depth bin of Ṽ ( j). P(β j = β(b j i))

denotes the probability that the depth bin of Ṽ ( j) is set as
β(b j i). Similarly, we also have

P(bzi ) � P(βz = β(bzi)). (16)

Plugging Eq. (15) and (16) in Eq. (14), we can get

Pwin(b j i) � P(β j = β(b j i))

×
∏

z∈S3

(1 − P(βz = β(bzi)))

×
∏

z∈S4

(1 − P(βz = β(bzi))) , (17)

where the depth bin β j should be the largest, when warping
competition occurs. Hence, the sorting algorithm on depth bins
is still needed in Eq. (17). In the next subsection, we will show
that the sorting can be further eliminated.

⎧
⎪⎨

⎪⎩

The0thindex ofβ, corresponds to d ∈ [0, �D−1([D(0)] + 0.5)�]
Thei th(1 ≤ i ≤ N − 2)index ofβ, corresponds to d ∈ [�D−1([D(0)] − 0.5 + i)�, �D−1([D(0)] + 0.5 + i)�]
The(N − 1)thindex ofβ, corresponds to d ∈ [�D−1([D(0)] − 0.5 + N − 1)�, 255]

(7)
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Fig. 3. Exhibition on warping competition in 1-D parallel mode. The blue and
green canvases stand for the left and right reference views respectively, which
will be warped to final warped view and represented with the red canvas.

To generate the probability distribution of the warped virtual
view’s depth bins, the probability of Ṽw(i) taking no value
from any edge is still necessary, which can be obtained by

PṼw(i)(φ) =
n∏

j=1

(1 − Pwin(b j i)). (18)

Based on the observations above, the probability distribution
of the warped virtual view can be generated more easily
by Eq. (17) and Eq. (18) instead of Eq. (28) to Eq. (30).
Additionally, S3 and S4 are usually several times smaller

than
j−1⋃

z=1
Sz,1 and

n⋃

z= j+1
Sz,2, which reduces the associated

operations significantly. It should be noted that the results of
the new method is equivalent to the old method. Next, we will
show that the complexity of Eq. (17) can be further reduced
utilizing the properties of depth bin.

D. Winning Probability Function Optimization According to
the Properties of Depth Bin

Assume vertices Ṽl(1), …, Ṽl(m) in the left reference view
are warped to the same target Ṽw(p) in the left warped view.
Similarly, vertices Ṽr (1), …, Ṽr (m) in right reference view
are warped to the target Ṽw(q) in the right warped view.
Ṽl( j) is the j -th left vertex, while Ṽr ( j) is the j -th right
vertex. The disparities of vertexes Ṽl(1) and Ṽl(2) are denoted
as δR(1,p) and δR(2,p), respectively. Based on the definition
of disparity in [4], for the left reference view, we have
δR( j,p) = Ṽl( j) − Ṽw(p). Therefore, δR(1,p) is always smaller
than δR(2,p), as shown in Fig. 3. Since the depth bin and
rounded disparity have an one-to-one positive correspondence
as discussed in Eq. (6), we can derive that the depth bin of
Ṽl(1) is always smaller than that of Ṽl(2).

For the general case of left reference view, we always have

β(b j p) < β(bmp), where j < m. (19)

Similarly, since the warp direction in the right reference
view is opposite to that in left reference view, the disparity
is defined as δR( j,q) = Ṽw(q) − Ṽr ( j). In other words,
the disparity of Ṽr (1) is always larger than that of Ṽr (2).

Furthermore, we can derive that the depth bin of Ṽr (1) is
always larger than that of Ṽr (2). Therefore, for the general
case of right reference view, we have

β(b jq) > β(bmq), where j < m. (20)

To summarize, in 1-D parallel mode, if each vertex in the
reference views is processed sequentially and independently
in the raster scan order from left to right, and if several
adjacent reference vertices are warped to the same location
in the warped view, these adjacent vertices’ depth bins satisfy
the following property.

Property 1: For the left warped view, the depth bin of each
warped vertex is always larger than those of the previously
warped ones. Whereas, for the right warped view, the depth
bin of each warped vertex is always smaller than those of the
previously warped ones.

According to Property 1, Eq. (17) can be further simplified
into Eq. (21), as shown at the top of the next page with the
same result. Besides, the sorting algorithm used to select the
largest depth bin can also be avoided, since Property 1 can be
used to predict the largest depth bin by recording the last (or
first) warped vertex in the left (or right) warped view, when
warping competition occurs. To solve Eq. (21), the depth bins
and the locations of vertices j and z (z ∈ S3

⋃
S4) are needed

to be recorded in advance, which incurs substantial memory
requirment, especially with larger S3 or S4. To solve this
problem, another property of depth bin is studied as follows.

As discussed above, the relationship between depth bin and
its associated disparity can be quantitatively calculated by
Eq. (6). For Ṽl(1) and Ṽl(2), which locate at adjacent integer
coordinates, we can easily get β(b2p) − β(b1p) = 1 based on
Eq. (6). In general, in the left reference views, the relationships
of these depth bins and their associated locations can be
expressed as follows,

β(bmp) − β(b j p) = m − j. (22)

Similarly, for the right reference view, we have

β(bmq) − β(b jq) = j − m. (23)

These two equations can be regarded as generalizations of
Property 1, which is summarized as follows.

Property 2: In 1-D parallel view synthesis, with full-pixel
precision selection, suppose several adjacent reference ver-
tices are warped to the same location in the warped view.
Given the location and depth bin of the current reference
vertex (such as j and β(b j i) in Eq. (21)), and the locations of
its adjacent reference vertices (such as vertices z (z ∈ S3

⋃
S4)

in Eq. (21)), we can exactly derive these adjacent reference
vertices’ depth bins (such as β(bzi ) in Eq. (21)) using Eq. (22)
and Eq. (23).

Then, Eq. (21) can be further simplified into Eq. (24), as
shown at the top of the next page. To solve Eq. (24), only
three components need to be recorded in memory in advance,
namely, the location of current reference vertex j and its depth
bin, and the locations of its adjacent reference vertices z. The
depth bins of all z are not needed, which can further save
memory.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on February 17,2023 at 07:37:26 UTC from IEEE Xplore.  Restrictions apply. 



1760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 6, JUNE 2019

Pwin (b j i) =

⎧
⎪⎨

⎪⎩

P(β j = β(b j i)) × ∏

z∈S4

(1 − P(βz = β(bzi ))), for left reference view.

P(β j = β(b j i)) × ∏

z∈S3

(1 − P(βz = β(bzi ))), for right reference view.
(21)

Pwin(b j i) =

⎧
⎪⎨

⎪⎩

P(β j = β(b j i)) × ∏

z∈S4

(1 − P(βz = β(b j i) + z − j)), for left reference view.

P(β j = β(b j i)) × ∏

z∈S3

(1 − P(βz = β(b j i) + j − z)), for right reference view.
(24)

E. Depth Bin Probability Distribution Conversion

Different from the DVGM, the DBGM is formulated based
on depth bin. Therefore, the initial per-pixel depth value
probability distribution in the reference depth maps should
be converted into depth bin probability distribution. In this
subsection, we will introduce a simple way to achieve this
conversion.

For a general case, we assume that the original depth value
(ground truth) of a reference pixel is d , then a discrete noise
distributed in [−a, b] is introduced. The corrupted depth value
de is in the range [d − a, d + b], each with its associated
probability. Then, de will be grouped into depth bins based on
Eq. (7). After that, the probability of de within the same depth
bin will be summed up to generate the their corresponded
depth bin probability distribution, which will be stored in the
memory and further sent to the DBGM to generate the VSDE.

There are two advantages of this conversion. Firstly, it can
reduce the memory cost. In the worst case 256 probabilities
are needed to record the depth value probability distribution
of each 8-bit pixel, while much less numbers are needed to
record the depth bin probability distribution by this conversion.
Secondly, if the packet-loss-caused view synthesis distortion
is required to be estimated, the RODE method can be directly
integrated with this conversion.

For the special case in [7] that a discrete noise signal which
is uniformly distributed in the range of [−σ , σ ] is introduced
to simulate errors in reference depth images, our conver-
sion above can still fully handle it. Besides, some important
theoretical analyses on time and memory consumptions can
be conducted in this case. Generally, the time and memory
consumptions in the DVGM and DBGM are affected by two
factors, namely σ and baseline L in Eq. (1) (the distance
between two reference view).

1) Fixing σ , and Increasing Baseline Distance: for instance,
as the baseline distance increases the running time of both the
DVGM and DBVM will increase. However, the increase in the
DVGM will be less than that of in the DBGM. Similarly, The
memory cost in both the DVGM and DBVM will increase as
well. The reason are analyzed as follows.

For the DVGM, the main computation costs come from
three equations: i) calculating winning probability of a certain
edge as discussed in Eq. (28), ii) summing up the winning
probability of all the edges within the set � in Eq. (29),
and iii) generating the probability of hole as discussed in
Eq. (30). Since σ is fixed, the distribution of the depth values
of each pixel is confirmed and the number of edges of each
vertex is constant. Therefore, the computation cost in Eq. (28)

is constant due to its depth-value-based calculation in the
DVGM. However, as the baseline becomes wide, N will
increase according to Eq. (2) and Eq. (5), which means each
set � will contain less edges and more set � are required to
keep the total number of edges from each vertex unchanged.
More calculation will be spent on Eq. (29) and Eq. (30),
while calculation cost on Eq. (28) remain constant. Therefore,
when baseline increases, the computation cost will be partially
increased. In contrast with the DVGM, the main stage of
computation cost of the DBGM focuses on two equations:
i) calculating winning probability of a bundle as formulated in
Eq. (14), and ii) obtaining the probability of hole as mentioned
in Eq. (18). Both of these two equations are operated based
on depth bins. As baseline gets wider, N will be increased,
which will increase the computation cost in both equations.
Therefore, when baseline increases, the computation cost will
be fully increased.

Since many factors will cause memory cost change, such
as the algorithm complexity, arguments storage and so on.
As baseline increases, on the one hand, the complexity of both
of these two methods will be increased undoubtedly. On the
other hand, it also increases the number of variables used in
the equations above and finally leads to increased memory
cost.

2) Fixing Baseline Distance, and Increasing σ : generally,
when σ increases, the running time and memory cost in both
the DVGM and DBGM will increase.

In detail, as σ increases, the number of possible depth
values for each vertex in the DVGM must be increased with
the same scale, but the growth of σ may not bring the same
growth for depth bins, because each depth bin in the DBGM
represents several depth values. Therefore, our proposed model
shows better performance in terms of efficiency, when larger
distortion exists in reference depth images. Undoubtedly,
the increase of σ will increase the algorithm complexity and
storage in both the DVGM and DBVM.

IV. EXPERIMENTAL RESULTS

To validate the proposed DBGM in this paper, three eval-
uations are first presented in this section. The first one is
efficiency evaluation, which shows that the proposed DBGM
is 8 to 32 times faster than the DVGM depending on the
conditions. The second one is the memory cost evaluation,
which shows that the DBGM achieves 17% to 60% of memory
saving compared to the DVGM depending on the conditions.
The last one is the accuracy evaluation, which confirms that
the proposed DBGM can always achieve the same accuracy
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TABLE I

RUNNING TIME COMPARISON BETWEEN DVGM AND DBGM

as the DVGM. Besides, we also integrate the DVGM and
DBGM with the RODE and further present the accuracy eval-
uation, which shows that the integrated DBGM+RODE and
DVGM+RODE can achieve the same accuracy performance
during estimating packet-loss-caused view synthesis distortion.

It should be noted that this paper aims to optimize the
graphical model in the VSDE. Hence, most of the tests in
this section focus on the comparison between DBGM and
DVGM. To get fair comparison, we firstly use the test setup
in [7] that introduces a discrete noise signal which is uniformly
distributed in the range of [−σ , σ ] to simulate errors in
the reference depth images. Since the performances of both
the DVGM and DBGM are associated with the distortion of
depth images and the baseline distance, different values of
σ and different baseline distances are chosen to be tested.
Finally, we also record the number of depth bins N used
in our model in each sequence. The results are exhibited
in Sec IV.A, B, and C.1. Then, a setup on the integrated
DBGM+RODE and DVGM+RODE test is elaborated as

follows. Both the texture and depth images are independently
encoded using H.264/AVC, where three rows of macroblocks
are collected in each slice. The packet loss rates are 2%, 5%,
and 8%, respectively. GOP sizes of 30 and 60 are used. The
results are exhibited in Sec IV.C.2. Besides, as both the DVGM
and DBGM are used to generate the view synthesis distortion
rather than synthesizing virtual views, all the test records in
this section do not include view synthesis operations in both
of these two models.

In this section, all the testing MVD sequences are chosen
from the Common Test Conditions (CTC) of 3DV Core Exper-
iments [28], such as Kendo and Balloons [29] (provided by
Nagoya University), Undo Dancer [30] (provided by Nokia),
Newspaper and Café [31] (provided by Gwangju Institute
of Science and Technology), Lovebird1 [32] (provided by
ETRI and MPEG Korea). The resolutions of these sequences
are listed in TABLE I and TABLE II. The first 100 frames
from sequence Kendo, Balloons, Newspaper, Lovebird1 are
selected. As the DVGM requires a lot of memory, for fair
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TABLE II

MEMORY COST COMPARISON BETWEEN DVGM AND DBGM

comparison, we have to choose the first 50 frames of Undo
Dancer and Café in the test.

All the simulations in this paper are tested on a laptop,
namely Dell inspiron 7559 Signature Edition with Intel(R)
Core(TM) i7-6700HQ CPU, 16.00GB memory, and 64-bit
Operating System.

A. Evaluation of Efficiency
In this subsection, we compare the running time between

these two models without the RODE integration. The total
running time contains two parts, namely the preparation-stage
time cost and main-stage time cost, which are denoted as
Time1 and Time2 in Table I, and their units are seconds per-
frame. The baseline notation of i ( j ,k) means that View j and
View k are used to synthesize View i . It can be seen that
our proposed DBGM is 8 to 32 times faster than the DVGM
depending on σ and baseline configurations. The main reasons
are as follows: i) To generate the per-pixel distribution in
the synthesized view using the DVGM, each vertex in the

reference depth images is required to be calculated through
three equations (Eq. (28) to (30)), while only two equations
(Eq. (18) and (24)) are needed in the DBGM. ii) Thanks to the
properties of depth bins, the equations in the DBGM are much
simpler than those in the DVGM, and less items are needed
to be recorded in the memory. Besides, the sorting algorithm
required in Eq. (28) in the DVGM is also avoided in Eq. (24)
in the DBGM. iii) Compared with the redundant depth-value-
oriented equations in the DVGM, the equations in the DBGM
are implemented based on depth bin. In terms of the same σ ,
the DBGM needs considering less complexity.

Besides, based on the results in Table I, we can easily find:
i) as we fix σ and increase baseline, the running time of both
the DVGM and DBGM increases. However, the running time
increase factor of the DVGM is less than that of the DBGM.
ii) as we fix baseline and increase σ , the running time of both
the DVGM and DBGM increases as well. All the experimental
results in Table I exactly verifies our theoretical analyses on
time consumption in Sec III.E.
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Fig. 4. Distortion estimation performance of the DVGM+RODE and DBGM+RODE. (a) Balloons: GOP = 60, packet loss = 2%. (b) Kendo: GOP = 30,
packet loss = 5%. (c) Dancer: GOP = 30, packet loss = 8%.

B. Evaluation of Memory Cost

In this part, we evaluate the memory cost in the DBGM
and DVGM without the RODE integration. The Resouce
Monitor [33] provided by Windows 10 system is used as our
testing tool. Resouce Monitor can capture a data processing
system’s internal resource utilization, such as memory in real-
time. With its assistance, we can directly obtain the memory
consumption of a program of interest. We use the Working
Set in Table II to represent the total memory of a program,
which contains two components: 1) Sharable, which is the
memory allocated to a program that can be shared to other
programs, and 2) Private, which is the memory allocated to
a program that can only be used by itself, and their units
are all kilobyte (kB). As shown in TABLE II, our proposed
DBGM can save 17-60% of memory compared to the DVGM
depending on the σ and baseline. The main reasons are as
follows: i) the complexity of the DVGM is higher than that of
the DBGM, which leads to much more memory cost focusing
on algorithm implement in the DVGM. ii) to implement the
DVGM and DBGM, their corresponded variables are needed
to be stored in the memory in advance. However, the variables
of the DBGM is obviously less than that of the DVGM, since
all the variables of the DBGM are based on depth bins, which
is more sparse than that of the DVGM. Therefore, the memory
cost for storage in the DVGM is larger than that in the DBGM.
As a result, our proposed DBGM requires less memory cost
compared with the DVGM.

Besides, from the experimental results in Table II, either
increasing σ or baseline will cause the increase of memory
cost in both the DVGM and DBGM, which verifies the our
theoretical analyses on memory consumption in Sec III.E as
well.

C. Evaluation of Accuracy

1) We First Evaluate the Accuracy of These Two Models
Without the RODE Integration: The details results are shown
in TABLE III, which are the average results of all the tested
frames in different sequences. When the value of σ changes
from 3 to 9, both methods have an MSE between 40 to 650,
which covers the range of most practical scenarios. Besides,
both these two models can achieve the same accuracy.

2) We Then Evaluate the Accuracy of These Two Mod-
els With the Rode Integration: Frame-by-frame results are

TABLE III

MSE COMPARISON BETWEEN THE DVGM AND DBGM

exhibited in Fig. 4. We can obviously find that the integrated
DBGM+RODE and DVGM+RODE still can achieve the same
accuracy during estimating packet-loss-caused view synthesis
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distortion. Besides, both methods can predict the simulated
distortion trend very well.

From this subsection, we can conclude that both the DBGM
and DVGM can achieve the same accuracy, no matter inte-
grated with the RODE or not.

V. CONCLUSION

In this paper, we develop a novel depth-bin-based graph-
ical model (DBGM), which models the complicated view
synthesis process at depth-bin level so that it can be used
for fast view synthesis distortion estimation. To this end,
we first use depth bins to represent the redundant depth
values. Then, the properties of depth bins are studied and
used to optimize the winning probability function. Finally,
we develop a conversion technique, which converts the depth
value probability distribution in the reference depth maps into
depth bin distribution. This conversion can also be used as a
bridge to connect the RODE and DBGM in order to estimate
the packet-loss-caused view synthesis distortion. Experimental
results verify that the proposed DBGM is faster and consumes
less memory than the DVGM, with exactly the same accuracy.

For the further work, we will try to apply the depth bin
concept to simplify the process of RODE in depth image dis-
tortion estimation. Besides, the sub-pixel precision estimation
will be taken into consideration in the DBGM to enhance
its accuracy during the VSDE. Meanwhile, the region-based
approach will also be considered for the DBGM to further
reduce the complexity of the proposed scheme.

APPENDIX

OVERVIEW OF THE DVGM IN [7]

In [7], to measure the packet-loss-caused view synthesis
distortion, the mean squared error (MSE) is used as distortion
metric. The expected per-pixel distortion in synthesized view
can be written as

E{D(i)} = E{(Ts(i) − T̃s(i))
2}

= Ts(i)
2 − 2Ts(i)E{T̃s(i)} + E{T̃s(i)

2}, (25)

where Ts(i) is the correctly synthesized i -th texture pixel in
the virtual view, T̃s(i) is the synthesized texture pixel at the
receiver when the reference texture and depth images contain
random errors. Therefore, once the first and second moments
of T̃s(i) are achieved, synthesized view distortion can be
estimated by this equation.

To represent the relationship between the synthesized view
and the reference views, a weighted blending model is consid-
ered during formulation, where the weight is determinate and
denoted as a. Then, the first and second moments of T̃s(i) are
represented as

E{T̃s(i)} = (1 − a)(1 − PT̃w1 (i)(φ))E\φ{T̃w0(i)}
+ a(1 − PT̃w0 (i)(φ))E\φ{T̃w1(i)}
+ PT̃w1 (i)(φ)E\φ{T̃w0(i)}
+ PT̃w0 (i)(φ)E\φ{T̃w1(i)}
+ PT̃w0 (i)(φ)PT̃w1 (i)(φ)E{T̃ I

s (i)}, (26)

Fig. 5. Depth-value-based graphical model for the view synthesis algorithm.

E{T̃s(i)
2} = (1 − a)2(1 − PT̃w1 (i)(φ))E\φ{T̃w0(i)

2}
+ a2(1 − PT̃w0 (i)(φ))E\φ{T̃w1(i)

2}
+ 2(1 − a)a E\φ{T̃w0(i)}E\φ{T̃w1(i)}
+ PT̃w1 (i)(φ)E\φ{T̃w0(i)

2}
+ PT̃w0 (i)(φ)E\φ{T̃w1(i)

2}
+ PT̃w0 (i)(φ)PT̃w1 (i)(φ)E{T̃ I

s (i)2}, (27)

where T̃wm (i) (m = 0, 1) is the i -th texture pixel in the
warped view mapped from the left and right texture images
respectively in the presence of errors. E{T̃ I

s (i)k} is the first
and second moments of an inpainted hole, which is also
determinate. PT̃wm (i)(φ) represents the probability of T̃wm (i)

being a hole. E\φ{T̃wm (i)k} denotes the partial k-th moment
of T̃wm (i) when it is not in a hole.

In order to calculate E{T̃s(i)} and E{T̃s(i)2}, both
PT̃wm (i)(φ) (m = 0, 1) and E\φ{T̃wm (i)k} are needed. In the
1-D view synthesis algorithm, since the distributions of the
warped texture pixels are determined by those of the reference
depth maps, once the distributions of the warped depth pixels
are known, the PT̃wm (i)(φ) (m = 0, 1) and E\φ{T̃wm (i)k} can
be achieved.

In DVGM, for simplicity, assume that only the reference
depth images are affected by random noises with a known
distribution and the noises are independent from pixel to pixel.
The relationship between a reference and the warped depth
map is represented by a bipartite probabilistic graph as shown
in Fig. 5, where vertices Ṽ ( j) represents the j -th vertex (or
pixel) in the reference view, and Ṽw(i) is the i -th vertex in
the warped view. As random noise is added, each depth vertex
may contains several different depth values with appropriate
probabilities, which may correspond to several disparities and
further lead to multiple possible warping targets in the warped
view. This is represented by edges emitting from Ṽ ( j) to
a number of Ṽw(i) vertices. Each edge corresponds to one
possible warping path with one depth value for Ṽ ( j) and the
corresponding probability. For the k-th edge among all the
edges between Ṽ ( j) and Ṽw(i), the edge and its associated
depth value are denoted as ek

j i and d(ek
j i). Since vertices

unconnected to Ṽw(i) are irrelevant, only Ṽ (1) to Ṽ (n)
are considered. Based on the depth-value-oriented warping
competition rule, when ek

j i is the final winner, d(ek
j i) should be

the largest. Hence, all the edges emitted from previous vertices
Ṽ (z) to Ṽw(i) with condition d(el

zi) ≥ d(ek
j i) are denoted by a

set Sz,1 (z = 1, . . . , j −1), which is required to be abandoned.
All the edges emitted from subsequence vertices Ṽ (z) to Ṽw(i)
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with condition d(el
zi ) > d(ek

j i) are denoted by another set
Sz,2 (z = j + 1, . . . , n), which should also be abandoned.
Let P(ek

j i ) denote the probability of edge ek
j i . The winning

probability of edge ek
j i is defined as Pwin(ek

j i ), which could
be formulated as

Pwin(ek
j i ) = P(ek

j i )

×
j−1∏

z=1

(1 −
∑

l∈Sz,1

P(el
zi ))

×
n∏

z= j+1

(1 −
∑

l∈Sz,2

P(el
zi )), (28)

we define this function as the winning probability function.
Assume all these winning edges between Ṽ ( j) and Ṽw(i)

are collected into a set �. Then, the probability that Ṽ ( j) will
be warped to Ṽw(i) can be expressed as

Pwin(e j i) =
∑

k∈�

Pwin(ek
j i), (29)

The probability of Ṽw(i) taking no value from any edge, i.e.,
Ṽw(i) is in a hole, is denoted as PṼw(i)(φ), which is expressed
by

PṼw(i)(φ) =
n∏

j=1

(1 − Pwin (e j i)). (30)

Based on Eq. (29) and Eq. (30), the distributions of the
synthesized depth pixels can be achieved, which is based
on an assumption that only the reference depth images
are affected by random noises with a known distribution.
Therefore, the PMFs of both the depth and texture values
of each reference pixel are needed, if DVGM is used to
estimate the packet-loss-caused view synthesis distortion with
DVGM.

To handle this, a RODE method is developed, which is a
ROPE-like method. Instead of calculating the first and second
moment of decoded pixel in ROPE, RODE is used to estimate
the PMF of decoded pixel recursively. In RODE, for an intra-
coded pixel, if its data are received, its PMF is simply a
Kronecker delta function with a value of 1 at the location
of the encoder reconstruction and 0 elsewhere. If the pixel is
lost, the PMF from the previous frame will be propagated to
the current frame due to the error concealment. For an inter-
coded pixel, when the pixel is received, the PMF of current
pixel is shifted from that of reference pixel by the residual
value. If the pixel is lost, the PMF from the previous frame is
propagated.

The DVGM assumes that only the reference depth has
errors. When both the reference depth and texture have errors,
the RODE method above and DVGM can be integrated.
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