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JNMR: Joint Non-Linear Motion Regression
for Video Frame Interpolation

Meiqin Liu , Chenming Xu , Chao Yao , Chunyu Lin , Member, IEEE, and Yao Zhao , Fellow, IEEE

Abstract— Video frame interpolation (VFI) aims to generate
predictive frames by motion-warping from bidirectional refer-
ences. Most examples of VFI utilize spatiotemporal semantic
information to realize motion estimation and interpolation.
However, due to variable acceleration, irregular movement trajec-
tories, and camera movement in real-world cases, they can not be
sufficient to deal with non-linear middle frame estimation. In this
paper, we present a reformulation of the VFI as a joint non-linear
motion regression (JNMR) strategy to model the complicated
inter-frame motions. Specifically, the motion trajectory between
the target frame and multiple reference frames is regressed by a
temporal concatenation of multi-stage quadratic models. Then,
a comprehensive joint distribution is constructed to connect
all temporal motions. Moreover, to reserve more contextual
details for joint regression, the feature learning network is
devised to explore clarified feature expressions with dense skip-
connection. Later, a coarse-to-fine synthesis enhancement module
is utilized to learn visual dynamics at different resolutions
with multi-scale textures. The experimental VFI results show
the effectiveness and significant improvement of joint motion
regression over the state-of-the-art methods. The code is available
at https://github.com/ruhig6/JNMR.

Index Terms— Video frame interpolation, multi-variable non-
linear regression, motion estimation, interpolation modeling,
deformable convolution.

I. INTRODUCTION

THE purpose of video frame interpolation (VFI) is to gen-
erate new middle frames from existing reference frames.

It is essential for various applications, such as slow-motion
generation [1], frame compensation in video compression [2],
[3], [4], [5], frame recovery [6], [7], etc. Typically, high-
level global motions and subtle variations of the synthesis
frame have the same importance. Therefore, it is challenging
to accurately estimate the complicated motions for frame
interpolation modeling.
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Fig. 1. Quantitative comparison of performance and model parameters with
the Vimeo-90K Septuplet dataset. JNMR outperforms state-of-the-art methods
with a competitive model size.

In general, many methods formulate complicated VFI
motion estimation as seeking the warping correlation from
historical consecutive frames. Optical flow-based solutions [8],
[9] and kernel-based methods [10], [11] are commonly applied
to realize the pipeline. Optical flow-based methods initially
entail utilizing convolutional networks [12], [13] to estimate
pixel-level motions. Whereas, the interpolation performance
is limited by the accuracy of optical flow estimation. There-
fore, some works [14], [15], [16], [17] propose to utilize
exceptional features and supervision operations for improving
the flow estimation accuracy. However, these methods suffer
from high computational costs. Additionally, it is inevitable
that the estimation precision of long-term variations and
complex occlusions will be decreased by only exploring spa-
tiotemporal dynamics in low-dimensional space. Kernel-based
methods [11], [18], [19], [20] entail utilizing a deformable
convolution operation for motion estimation, which can enable
the adaption of the spatial dynamic scenes and the expansion
of the receptive field of motion. However, the interpolation
performance is still limited by the finite relations between
inter-frame.

To explore temporal correlations, some approaches [21],
[22], [23], [24], [25] entail extending the motion estimation
methods to multiple reference frames interpolation. These
methods primarily address the spatiotemporal correlations of
complex motions by focusing on feature synthesis. Certain
approaches [23], [24], [25] gradually divide temporal motions

1941-0042 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on September 27,2023 at 01:19:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8428-5098
https://orcid.org/0000-0001-5429-2086
https://orcid.org/0000-0001-5483-3225
https://orcid.org/0000-0003-2847-0349
https://orcid.org/0000-0002-8581-9554


5284 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

into smaller groups to enhance the accuracy of motion esti-
mation. Other methods [21], [22] utilize 3D convolution to
synthesize frames not only in the space dimension but also
in the time dimension. However, the above methods mostly
involve an assumption that there are uniform motions between
consecutive frames according to a linear distribution (as with
the black model in Fig.2(a)) in kinematics. This assumption
fails to consider motion correlations in the temporal dimension
of multi-variable regression. To address this problem, some
works [26], [27], [28], [29] explore a quadratic interpola-
tion model for multi-variable regression, allowing prediction
with variable velocity and non-linear attributes. Furthermore,
Dutta et al. [30] use the coefficients to adaptively select a
linear or quadratic model for non-linear motion formulation.
Shen et al. [31] introduce ConvLSTM to combine consecutive
linear features as a quadratic regression. As illustrated in the
blue model of Fig.2(a), these methods entail the prediction of
intermediate motions with a curvilinear trajectory instead of
the linear geometric center estimation.

Nevertheless, the non-linear movements in real-world
scenes are always more complicated than previous assump-
tions due to variable acceleration, irregular movement tra-
jectories, camera movement and shaking, etc. The linear
and quadratic models cannot precisely describe non-linear
situations. Therefore, in contrast to other methods, we utilize
a multi-stage non-linear model to optimize the motion com-
pensation. As shown in Fig.2(b), VFI is reformulated as the
joint decoupled quadratic trajectories to refine the simulation
of irregular movements.

Specifically, we propose a joint non-linear motion regres-
sion (JNMR) strategy to optimize the interpolation modeling,
where both spatial deformations and temporal variations are
considered. The movements can be regarded as a tempo-
ral concatenation of multi-stage quadratic models to address
complicated motion reconstruction. ConvLSTM is imple-
mented to initialize existing motions as a distribution in
the temporal dimension. To preserve the moderate semantics
of variations, we explore a hierarchical network structure
before regression to retain the high-level variations in feature
learning. Meanwhile, the skip-connection operation between
the convolutional layers is utilized to compensate for the
subtle variations in the final features. A coarse-to-fine syn-
thesis enhancement module is designed for different spatial
resolution feature synthesis with joint regression to fur-
ther remove artifacts and unreliable pixels. Experimental
results demonstrate the effectiveness of JNMR on video
frame interpolation, outperforming state-of-the-art methods,
as shown in Fig.1. In summary, our contributions are as
follows:

• We propose a joint multi-variable non-linear motion
regression strategy for motion compensation of VFI. The
refined interpolation modeling can reconstruct the actual
kinematic characteristics among large and complicated
motions.

• We leverage ConvLSTM to realize the joint multi-stage
quadratic model for JNMR, which enhances the temporal
consistency in inter-frame prediction.

Fig. 2. Visualization of linear/quadratic estimation models and the proposed
joint multi-stage non-linear regression model. (a) Il denotes the symmetric
midpoint referred to as a linear function, and Iq represents the middle motion
of the quadratic trajectory. It can be observed that both the linear (black) and
the quadratic (blue) models cannot precisely estimate some relatively compli-
cated intermediate motions in the sequence {I−2, I−1, I0, I1, I2}. (b) The
interpolation is reformulated as decoupling the trajectory into individual
regression models. The successive estimation with individual models can be
regressed as a reintegration to predict I0.

• We design the regression-driven feature learning module
and coarse-to-fine enhancement module, separately opti-
mizing the feature extraction with competitive parameters
and pleasing visual qualities on different resolutions.

II. RELATED WORKS

Intermediate frames are generated by motion estimation and
interpolation modeling. Motion estimation methods mainly
incorporate optical flow-based methods and kernel-based
methods. The non-linear interpolation strategy is proposed to
match the curve trajectory. We briefly review related works in
the following section.

A. Optical Flow-Based Methods

Optical flow-based methods aim to exploit the pixel-wise
corresponding relationships of bidirectional reference frames
as motion vectors for VFI. Xue et al. [13] first introduce bidi-
rectional optical flows for motion estimation. Park et al. [32]
recursively warp the optical flow by tracking the posi-
tion with the greatest correlation. Cheng et al. [33] utilize a
feature pyramid to achieve multi-scale optical flow estima-
tion. Huang et al. [15] design a privileged distillation scheme
optimized by the ground truth for precisely training interme-
diate flow models. Kong et al. [34] adopt a gradually refined
intermediate feature to efficiently compensate for contex-
tual details. Lu et al. [35] leverage Transformer to extend
the receptive field of optical flow for long-term dependency
optimization. To further improve the accuracy of flow estima-
tion, some methods [14], [36], [37] have entailed inferring
the additional information during the warping of original
frames, such as with asymmetric fields and softmax splatting.
Sim et al. [38] propose a recursive multi-scale structure for
extreme VFI on 4K videos. In addition, many solutions have
utilized multi-frame as input to enhance the logical conti-
nuity of optical flow. Specifically, Shen et al. [31] introduce
ConvLSTM to estimate optical flow and combine temporal
and spatial data. Park et al. [17] promote exceptional motion
detection to improve the robustness of interpolation. These
works have achieved state-of-the-art performance in realistic

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on September 27,2023 at 01:19:28 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: JNMR: JOINT NON-LINEAR MOTION REGRESSION FOR VIDEO FRAME INTERPOLATION 5285

intermediate frame generation. However, the methods involved
suffer from inaccurate pixel shifts, ghosting or blurry artifacts
that are inevitably generated where the temporal dynamics
dependencies are significant for the input frames.

B. Kernel-Based Methods

Instead of relying on optical flow, kernel-wise convolutional
operations have been introduced to expand the receptive
field of motion estimation with a lower computation burden.
Niklaus et al. [11] are the first to provide useful insights on
how to match the visual scenes and complicated motion for
new frame interpolation through a dynamic network. To adapt
to inter-frame motion properties, Lee et al. [19] design the
AdaCoF model to complement the offset vector coefficient for
kernel estimation. Cheng and Chen [39] propose an enhanced
deformable separable convolution to estimate relatively com-
plete kernel motions with a non-local neighborhood. To further
extend the receptive field of kernel estimation, Shi et al. [24]
and Tian et al. [40] explore a suitable distribution of reference
points to effectively train the generalized deformable convo-
lution for capturing the shape of the object. With regard to
the improvement on the concrete network structure of the
feature extraction, Ding et al. [20] deploy the feature pyramid
and network compression in motion learning to strengthen
the robustness with parameter reduction. Wijma et al. [41]
implement spatial pyramids to increase the receptive field
of the model to adaptively adjust the kernel size. Neverthe-
less, the limitation on temporal dependency still exists in
kernel-level motion estimation. Thus, Choi et al. [42] attempt
to utilize channel attention to distribute individual feature
maps for motion extraction with spatiotemporal information.
Kalluri et al. [21] and Danier et al. [22], [23] adopt multi-
scale 3D convolution to solve the spatiotemporal dependence
with multiple frames. To integrate the advantages of the
optical flow-based method in detailed motions, Bao et al. [43]
propose the MEMC-Net to estimate motions by optical flow
and deformable convolution. Hu et al. [44] propose a recurrent
motion-enhanced interpolation network based on MEMC-Net
to further capture spatiotemporal perspectives. Shi et al. [45]
utilize the stacked optical flow estimator, trainable feature
extraction and residual convolutional network to increase the
quality of the interpolation view. Xiao et al. [46] propose a
joint framework of flow and kernel estimation to achieve
the space-time super-resolution of satellite videos. However,
these methods use the compositions of convolutional layers
to enable the learning of the spatiotemporal motions in com-
plicated scenes without considering the consecutive variation
recurrence. More importantly, both flow-based and kernel-
based methods explicitly or implicitly assume linear motion
among input frames, which leads to insufficient exploration of
higher-order information in motion estimation.

C. Interpolation Modeling Methods

To further model long-term dynamics consistency from his-
torical observations, some researchers have made innovations
in terms of interpolation modeling based on existing motions.
Typically, Zhou et al. [47] develop a texture consistency loss

to ensure that interpolated content maintains structures simi-
lar to corresponding counterparts. Argaw et al. [48] conduct
motions in the same direction as references for current
interpolation when there is a large gap between input
frames. In addition, some methods [49], [50], [51] pro-
pose the progressive non-linear motion estimation strategy,
which aims to approximate complex motions. BasicVSR [49]
and BasicVSR++ [50] use temporal alignment for long-term
motion formulation in video super-resolution with all frames
known, where the accumulation of errors may affect the final
performance. Zhou et al. [51] propose an iterative alignment
strategy that performs gradual refinement for shared sub-
alignments. These methods focus on identifying how a finer
motion for alignment can be learned with all frames known
and on matching motion estimation in temporal dimensional-
ity. To obtain reliable motions from a kinematic perspective,
non-linear models [26], [27], [28], [29], [30], [52] have been
utilized with the aim of approximating complex motion in
the real world and overcoming the temporal limitation of
camera sensors. Xu et al. [26] first define a quadratic model
against existing linear models. To achieve precise motions,
Liu et al. [27] adopt a rectified quadratic flow prediction
formulation with a least squares function. Zhang et al. [28]
further derive a general curvilinear motion trajectory formula
on reference frames without temporal priors. Dutta et al. [30]
utilize the predicted non-linear flow as coefficients to auto-
matically select linear or quadratic models through space-time
convolution networks. Tulyakov et al. [52] realize continuous
non-linear motion estimation by combining both images and
intermediate events. However, due to the incomplete consid-
eration of complicated models in real scenes, the performance
of VFI is still limited. Hence, we reformulate VFI as a
joint regression strategy and further expand upon the existing
models to adapt them to kinematic situations.

III. METHODOLOGY

A. Formulation

Multi-reference VFI entails the assumption that an input
dynamic video sequence {In | n ∈ {−

N
2 , . . . ,−1, 1, . . . N

2 }}

consists of N frames along the time dimension, where each
frame is recorded in a spatial region of RC×H×W . The goal
is to predict the most likely frame I0 for the ground truth
intermediate frame Igt .

Following the kernel-based motion estimation methods [19],
the variations of the input sequence In can be modeled as the
motions. Specifically, the input synthesized features can be
decoupled into motion vectors using deformable convolution
kernels, where the input frames In are refined to the warped
frames În , as:

În(i, j)

=

K−1∑
p=0

K−1∑
q=0

W p,q(i, j)In(i + dp + α p,q , j + dq + β p,q)

(1)

where În(i, j) denotes the target pixel at (i, j) in In , d ∈

{0, 1, 2, . . .} indicates the dilation of the motion vectors bias
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(p, q), and K is the kernel size. W p,q and (α p,q , β p,q) denote
the kernel weight and motion vectors between In(i, j) and
În(i, j).

Next, considering the occlusion between bidirectional
resource frames, the interpolated frame Î0 is formulated as:

Î0 = O ·

−1∑
t=−N/2

În + (1 − O) ·

N/2∑
t=1

În (2)

where [·] is the inner product between two matrices. O ∈ [0, 1]

indicates the occlusion generated by the deconvolutional layers
with a sigmoid function. However, the spatial information
modeled by the above formulation is limited to linear correla-
tions, which neglects the essential information about temporal
variable dynamics in real complicated kinematics.

To estimate the complicated motion of the intermediate
frame, we first reformulate the VFI as a motion-time model:

ỹn = ωn xn (3)

where xn denotes the temporal variables. ỹn is the correspond-
ing predicted motion. ωn is a regression coefficient related
to temporal variables Mn . Typically, Mn with the common
component (Wn, αn, βn) is defined as an image wise motion
from In → I0. To further concretize the correlations in Eq.3,
the motions can be commonly understood as the distance
between two frames I0 and In .

Therefore, according to the general kinematic regularity,
motions can be quantified by the instantaneous velocity v0 of
In and acceleration at as a distance-time function:

Mn+1 − Mn =

∫ t

0
(v0 +

∫ k

0
at dt)dk (4)

where (Mn+1 − Mn) is a variation vector and represents the
distance between two frames. t is the differentiable variable
between two adjacent motions. k is the intermediate variable
used for integration. Since v0 and at are difficult to calculate,
two adjacent motions cannot determine the kinematic regres-
sion model. Thus, an additional motion Mn−1 is introduced,
and the new condition can be formulated as:

Mn − Mn−1 =

∫ t

0
(v0 −

∫ k

0
at dt)dk (5)

Since the instantaneous velocity v0 is constant, the kine-
matic model can be solved as the difference between Eq.4
and Eq.5:

(Mn+1 − Mn) − (Mn − Mn−1) = 2
∫ t

0
at tdt (6)

It is evident that the quadratic model can be determined
by at least three consecutive motions {Mn−1, Mn, Mn+1}.
Obviously, this assumption is based on the prior that the move-
ment follows a uniform acceleration. In real-world scenarios,
objects do not always move regularly at a consistent velocity.
It is inaccurate to describe the overall motion only by this
dynamical model.

Consequently, we design a general kinematic model to
capture complicated motions by combining consecutive inde-
pendent quadratic models, which can be regarded as uniformly
variable motion. The parameters of each individual quadratic

model can be defined by the existing motions, and the
empirical regression equation of the kinematic model can be
determined as:

ŷn = ω̂n xn (7)

with

ŷn = M̂n,

ω̂n = [Mn, v̂n, ân],

xn = [1, t, t2
]
T (8)

where M̂n denotes the individual regressed motions from Mn .
v̂n and ân are the initial velocity and acceleration of In .

As depicted in Fig.2(b), the individual quadratic model is
inadequate to accurately capture the complicated non-linear
motions with irregularity. To alleviate this limitation,
we decompose the overall motion into a multi-stage quadratic
model. Specifically, three consecutive frames are utilized to
form a complete model after regressing the sub-distribution.
Following this pipeline, the whole regression can be defined
as the temporal-aware combination of multiple dependent
quadratic models as follows:

Hθ ( ŷn) = θ ⊗ Y (9)

with

θ = [θ
−

N
2 +1, · · · , θ N

2 −1],

Y = [M̂
−

N
2 +1, · · · , M̂ N

2 −1]
T (10)

where Hθ ( ŷn) represents the temporal concatenation of
quadratic models, which can be utilized to predict motions. θ

denotes the polynomial coefficient collection between different
quadratic models. ⊗ represents the temporal concatenation
instead of linear combination in general matrix multiplication.
Y contains the individual regressed motions. It is noted that
the above formulation releases the constraint of velocity and
acceleration and achieves the connection of the multi-stage
quadratic models. Furthermore, the empirical model could be
trained with forward and backward regression:

Hθ ( ŷn) = θ̂ ⊗ Ŷ (11)

with

θ̂ = [θ̂ f , θ̂b],

Ŷ = [M̂ f , M̂b]
T (12)

where θ̂ which contains [θ̂ f , θ̂b] denotes the collection of
bidirectional regressed polynomial coefficients. Ŷ denotes the
second-order regressed motion sequence. M̂ f and M̂b denote
the forward and backward regressed motions, respectively,
in a minimal unilateral neighborhood of the intermediate
moment. The intermediate instantaneous motion obtained in
Eq.12 cannot be directly transformed into the visual location
of the final frame. Consequently, the visual movement offset
1 Î0 needs to be inferred from the most adjacent frames I−1
and I1, as follows:

1 Î0 = θ̂ f · ϕ(I−1, M̂ f ) + θ̂b · ϕ(I1, M̂b) (13)
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Fig. 3. Illustration of our pipeline for interpolation. In particular, we implement a concatenation of four reference frames {I−2, I−1, I1, I2} as the input into
the network for regression-driven feature learning. The fusion feature F6 is processed by deformable convolution to obtain the corresponding motion vectors.
Then, a joint non-linear regression strategy is proposed to achieve robust interpolation modeling, considering the real kinematic model. The details are shown
in Fig.4. Finally, coarse-to-fine synthesis enhancement is designed to overcome artifacts caused by complicated motion estimation.

where θ̂ f and θ̂b denote the predicted polynomial coefficients
for forward and backward motions. ϕ indicates the warping
operation on the reference frame illustrated in Eq.1. The
current predicted frame Ĩ0 can be incorporated to make up
the limitation of long-term dynamics dependency, as:

Ĩ0 = Î0 + 1 Î0 (14)

where 1 Î0 indicates the visual movement offset, and
Î0 denotes the basic synthesis frame in Eq.2.

B. Regression-Driven Feature Learning

Feature learning module can obtain an aggregated feature
from the concatenation of input sequences before regression.
It is essential for each spatiotemporal dynamic feature to
be learned separately in the temporal dimension from the
input frame concatenation. Previously developed algorithms,
such as CNN-based [19], [20], [21] and Transformer-based
methods [25], [53], only formulate feature learning as a
general feature filter without consideration given to the internal
structure of fusion features. These stacked filter layers bring
structural redundancy and result in the loss of local-global
expressions. Therefore, we propose a regression-driven feature
learning (RDFL) network, which is shown in Fig.3. The RDFL
network not only compensates with multiple hierarchical spa-
tial structures to exploit high-level motions with appropriate
motion features for regression but also simultaneously reduces
the number of parameters.

In detail, the concatenation feature F of the multiple
candidate frames {I−2, I−1, I1, I2} is input into three convo-
lutional layers with the down-sampling operation to obtain
the fundamental feature F0 for computation reduction. Then,
three layers of the hierarchical spatial structure are utilized
with F0 to extract regression-aware detailed features F1 and

F2 with different resolutions, which can be expressed as:

F0 =↓ (φconv(F)),

F1 =↓ (φconv(F0)),

F2 =↓ (φconv(F1)) (15)

where ↓ () denotes the down-sampling operation with average
pooling and φconv() represents three consecutive convolutional
layers.

Then, to further enhance the spatial feature expression,
a multi-scale fusion strategy is implemented in the hierarchical
spatial structures by skip-connection operation. The deconvo-
lutions with the up-sampling operation are adopted to extract
features F3, F4 and F5, as follows:

F3 =↑ (φdeconv(F2)) + F1,

F4 =↑ (φdeconv(F1)),

F5 =↑ (φdeconv(F3)) + F0 + F4 (16)

where ↑ () denotes the up-sampling operation by bilinear
interpolation and φdeconv() represents three consecutive decon-
volutions. After that, F6 is sampled by F5, as follows:

F6 =↑ (φdeconv(F5)) (17)

where the final feature F6 can be decoupled as the original
motions {M−2, M−1, M1, M2} as in Eq.1.

C. Joint Non-Linear Motion Regression

After obtaining the appropriate motion features F6 from the
RDFL network, as shown in Fig.3, joint non-linear motion
regression (JNMR) is proposed to implement the aforemen-
tioned rationale in Sec.III-A with four reference motions
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Fig. 4. Illustration of JNMR structure details. Here, we incorporate temporal-aware motion sequences [M−2, M−1, M1] and [M2, M1, M−1] to model
different quadratic regressions for the middle motions [M̂ f , M̂b]. Thus, the entire model is regressed by optimizing each individual sub-non-linear model.

{M−2, M−1, M1, M2}. Following Eq.7, the individual bidi-
rectional regressed motions can be expressed as:

lim
f →0−

M̂ f =
(M1 − M−1) − 2(M−1 − M−2)

3
,

lim
b→0+

M̂b =
(M−1 − M1) − 2(M1 − M2)

3
(18)

where M̂ f and M̂b denote the forward and backward regressed
motions in a minimal unilateral neighborhood of the inter-
mediate moment, respectively. The variation vectors between
two frames are temporally combined by the consecutive Con-
vLSTM elaborated in Fig.4. For example, (M−2, M−1) and
(M−1, M1) are input into ConvLSTM to explore relative
variation for solving M̂ f in Eq.18 of the forward temporal
dimension. Later, M̂ f and M̂b are applied in Eq.12 for inde-
pendent regression to adaptively form a complete regression
model. The regressed expression can be attained as:

θ̂ ′
= [θ̂ (1 − θ̂ )],

Ŷ ′
= [M̂ f M̂b]

T (19)

where the regressed coefficient θ̂ is initialized by occlusion
O ∈ [0, 1]. The visual movement offset 1 Î0 can be inferred
by Eq.13, as:

1 Î0 = θ̂ · ϕ(I−1, M̂ f ) + (1 − θ̂ ) · ϕ(I1, M̂b) (20)

As illustrated in Eq.14, the basic synthesis frame Î0 can be
specifically expressed as:

Î0 = O · ( Î−2 + Î−1) + (1 − O) · ( Î1 + Î2) (21)

Consequently, the current predicted frame Ĩ0 can be attained
by the combination of Î0 and 1 Î0, as:

Ĩ0 = Î0 + 1 Î0 (22)

D. Coarse-to-Fine Synthesis Enhancement

After obtaining the motions {M−2, M−1, M1, M2}, the
interpolation frame Ĩ0 is synthesized by JNMR, as illustrated
in Sec.III-C. In general, occlusion affects the reconstructed
details and decreases the visual quality of interpolation frames.
Therefore, a coarse-to-fine synthesis enhancement (CFSE)
module is proposed to further preserve the details of inter-
polated frames.

As described in Sec.III-C and Fig.3, the coarse features
F2 and F3 are decoupled into motions, and Ĩ0 is reconstructed
at different scales. Following GridNet [54], the multi-scale
reconstructed frames are concatenated to generate a coarse-to-
fine interpolated frame I 0. The final interpolation frame I0 is
then synthesized with Ĩ0 and I 0, as:

I0 = λ · Ĩ0 + (1 − λ) · I 0 (23)

where λ denotes the weight coefficient initialized by occlusion.

E. Objective Function

For the end-to-end training, we utilize the objective, percep-
tual and deformation loss to measure the difference between
the synthesized frame I0 and its ground truth Igt . Specifically,
the ℓ1 loss with the Charbonnier penalty [55] is introduced as:

LCharbon = ρ(I0 − Igt ) (24)

where ρ(x) = (||x ||
2
2 + ϵ2)

1
2 and ϵ = 0.001.

The perceptual loss Lvgg is expressed as:

Lvgg = ||8(I0) − 8(Igt )||2 (25)

where 8() is a feature extraction from conv4_3 of the
pre-trained VGG16 [56].
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Fig. 5. Qualitative comparisons against the state-of-the-art multi-reference interpolation algorithms with the Vimeo-90K Septuplet dataset. Our method
generates higher-quality frames with an exquisite visual appearance and few distortions.

The deformation loss Ld is implemented to measure the
abnormal deformation distance of each directional motion
vector at the kernel-level as follows:

Ld

=

∑
i, j

||(α, β)i, j+1 − (α, β)i, j ||1+ ||(α, β)i+1, j − (α, β)i, j ||1

(26)

where (α, β)i, j represents the regressed kernel-level motion
vectors in M̂n and bidirectional motions in M̂ f and M̂b.

Three loss functions are combined to optimize the whole
network parameters for end-to-end training as follows:

L = LCharbon + λvggLvgg + λdLd (27)

where λvgg and λd denote the weight coefficients of perceptual
loss and deformation loss, respectively.

IV. EXPERIMENTS

A. Implementation Details

1) Configuration: All experiments are implemented on two
NVIDIA GeForce RTX 3090 GPUs with Intel(R) Xeon(R)
Gold 6226R CPUs. We conduct 120 training epochs with
the Vimeo-90K Septuplet [13] dataset and 30 fine-tuning
epochs on BVI-DVC [57] dataset with a mini-batch size of 8.
AdaMax [58] is the optimizer with β1 = 0.9 and β2 = 0.999.
The learning rate is set as 1e−3 to 1.5e−5 by half decay every
20 epochs. λvgg and λd are set to 0.005 and 0.01, respectively.

2) Training Datasets: We train our model using the Vimeo-
90K Septuplet [13] dataset, which includes 64,612 and 7,824
seven-frame sequences with a resolution of 256 × 448. To
further improve the performance for large motions, we use the
BVI-DVC [57] dataset, which includes 17,600 quintuplets with
a resolution of 256 × 256, to fine-tune for better evaluation.
The middle frame of each septuplet and quintuplet is the
interpolation target, and its adjacent four consecutive frames
are used as the input frames in Fig.3. We also apply random
horizontal, vertical flipping, and temporal order reversal to
further enhance the training dataset.

3) Evaluation Datasets: The experimental model is evalu-
ated not only on the validation set of the Vimeo-90K Septuplet
but also on other commonly used benchmark datasets, such
as DAVIS [59] and GoPro [60] as previously demonstrated

in QVI [26]. Using the same sampling principle, we report
PSNR and SSIM [61] with 2,849 quintuples generated from
DAVIS and 3,012 quintuples with a resized resolution of
480 × 854 from GoPro.

B. Evaluation Against State-of-the-Art Methods

To verify the effectiveness of JNMR, we make a fair
comparison with state-of-the-art methods using four reference
frames, such as QVI [26], PRF4 [31], EDC [22], ST-
MFNet [23], GDConvNet [24], FLAVR [21], MA-CSPA [47],
NME [30] and VFIT [25]. With regard to QVI, EDC,
ST-MFNet, GDConvNet, FLAVR and VFIT, the pre-trained
models are directly used with the same experimental setups
for evaluation. In addition, we compare AdaCoF [19] and
CDFI [20] using two reference frames with the Vimeo-90K
Septuplet. Regarding other studies presenting methods without
publicly available code,1 we conduct a comparison with the
results kindly provided by the study authors.

1) Quantitative Evaluation: As shown in TABLE I, our
proposed JNMR has great superiority with the Vimeo-90K
Septuplet, DAVIS, and GoPro benchmarks with exceptional
performance in terms of model parameters and running
time. Notably, JNMR achieves an interpolation performance
beyond 37 dB with the Vimeo-90K Septuplet dataset.
JNMR further improves the interpolation performance with-
out complicated feature learning and synthesis by exploiting
the temporal-aware acceleration information through joint
regression. Moreover, after the fine-tuning process with the
BVI-DVC dataset followed by the ST-MFNet, the experimen-
tal results in TABLE I show that JNMR has improved on
different test datasets. With only 5.7M parameters, JNMR
promotes significant improvements over state-of-the-art meth-
ods, such as 0.23 dB with the Vimeo-90K Septuplet and
1.16 dB with GoPro. In summary, our JNMR method achieves
new state-of-the-art performance with strong generalization for
different benchmarks with competitive parameters.

2) Qualitative Evaluation: We provide a qualitative com-
parison between our method and the latest state-of-the-art
methods with the Vimeo-90K Septuplet and DAVIS datasets
in Fig.5 and Fig.6. As shown in Fig.5, JNMR generates
visually pleasing interpolation results with clear structures on

1The results are marked by † in TABLE I.
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TABLE I
VIDEO FRAME INTERPOLATION: QUANTITATIVE COMPARISONS OF VIMEO-SEPTUPLET, DAVIS, AND GOPRO WITH STATE-OF-THE-ART METHODS.

THE NUMBERS IN BOLD AND UNDERLINE INDICATE THE BEST AND THE SECOND BEST PSNR(DB)/SSIM RESULTS WITH PARAMETERS(#P.).
THE RUN-TIME (RT) OF EACH MODEL IS REPORTED WITH AN INPUT SIZE OF 480P FRAMES.

THE RESULTS MARKED WITH † ARE CLONED FROM THE AUTHORS

Fig. 6. Qualitative evaluation of the high-speed motion of the DAVIS dataset. JNMR not only outperforms other models in terms of texture reconstruction
and artifact reduction but also generates a reasonable middle frame with structural consistency when dealing with large motions.

Vimeo-90K Septuplet. The two samples both contain compli-
cated motion with low resolution. In particular, the second
sample involves structural details such as characters. It is
noted that other methods fail to restore the original appear-
ance of the child’s foot and the rightmost text. In contrast,
our model achieves a sharp boundary and realistic texture
without excessive smoothing due to the appropriate feature
learning and motion regression. Furthermore, we demon-
strate the temporal-aware performance and the reconstruction
effect on high-speed movement in Fig.6. Although EDC [22],
ST-MFNet [23], FLAVR [21] and VFIT-B [25] generate

visually correct structures, there is some serious blurring due
to the direct fusion of overlaid input. QVI [26] relies on
the quadratic modeling of motions, but their interpolation
frames usually contain notable artifacts because of inaccu-
rate synthesis. In contrast, our method successfully handles
complicated acceleration movement modeling and produces
plausible structures with abundant details. In particular, the
relative position between the cement marking line and the
bus in the first sample indicates the temporal consistency in
consecutive frames. JNMR can realize a close relation to the
ground truth (GT) with clear edges and demonstrate effective
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Fig. 7. The temporal profile on the GroPro dataset. The temporal profile is
generated by stacking a single-pixel line (red light) among video sequences.
The resource sequence contains fifteen consecutive frames, where the nine
middle frames are generated by different models.

TABLE II
QUANTITATIVE COMPARISONS ON THE SLOW, MEDIUM AND FAST

SUB-COLLECTION OF THE VIMEO-90K SEPTUPLET WITH
STATE-OF-THE-ART METHODS. THE NUMBERS IN BOLD
AND UNDERLINE INDICATE THE BEST AND THE SECOND

BEST PSNR(DB)/SSIM RESULTS, RESPECTIVELY

capabilities in handling temporal-aware high-speed motions.
In addition, it is noted that our method can achieve clear text
reconstruction and edge preservation of high-speed moving
objects.

3) Temporal Consistency: We apply the temporal con-
sistency [62] to measure the movement of pixel lines and
further evaluate the structural continuity in interpolated videos.
Methods that exhibit similar pixel tendencies as the ground
truth are deemed to preserve the original temporal variations
effectively. We present the visual results of the comparison
methods on the GoPro dataset in Fig.7. The ground truth
contains crooked horizontal lines that indicate camera plat-
form movement. Our method reflects these dynamic scenes
with a fine high-frequency context. Other methods produce
overly smooth results and fail to capture the turning point
of pixel direction under long-term dynamics. From the above
evaluation, it can be seen that JNMR is an effective method for
restoring subtle temporal variations using motion regression.

4) Evaluation on Large and Complicated Motions: To
verify the superiority of JNMR on large and complicated
motions, we evaluate our method with Vimeo-90K Septu-
plet sub-collections according to the methods of previous
work [63]. The test sequences are stratified into slow, medium
and fast sub-collections by estimated motion velocities. Com-
pared to the other state-of-the-art methods with similar
complexity, as shown in TABLE II, our method performs
better performance on different motion velocities. Specifically,
it can be seen that motion regression among multiple reference

TABLE III
ABLATION RESULTS OF INDIVIDUAL SUB-COMPONENT

TABLE IV
ABLATION RESULTS OF DIFFERENT REGRESSION MODELS

frames can effectively improve VFI performance compared
with our baseline methods. As shown in Fig.8, the qualitative
example on the fast sub-collection demonstrates that JNMR
does not produce more motion artifacts when dealing with
complicated and large motions, especially in the case of
irregular camera movement in the first example.

C. Ablation Study

In this section, we present the results of the comprehensive
ablation studies to evaluate the contribution of the JNMR
strategy and other auxiliary sub-components with the Vimeo-
90K Septuplet dataset. The quantitative evaluation results of
individual components with the baseline model are shown in
TABLE III.

1) Joint Non-Linear Motion Regression: The proposed
JNMR is designed to model variable acceleration curve motion
as a multi-stage quadratic movement. To verify the effec-
tiveness of this strategy, we conduct different multi-variable
regressions as shown in TABLE IV. We first compare the
performance of the linear (Model 1) and quadratic (Model 2)
models. Then, the validity of the temporal-aware combination
using ConvLSTM illustrated in Sec.III-C is verified. We use
a linear combination of quadratic models (Model 3) to derive
M̂ f and M̂b without ConvLSTM. Model 3 can also be seen
as the natural cubic spline. Both Model 3 and natural cubic
spline obtain a quadratic curve locally and sequentially process
the video sequence. We also compare two different regression
strategies, unidirectional regression and second-order unidi-
rectional regression. In particular, unidirectional regression
(Model 4) only uses forward/backward motions in Eq.19,
such as Ŷ ′

= [M̂ f ]
T or Ŷ ′

= [M̂b]
T . The second-order

unidirectional regression (Model 5) makes a key ablation in
terms of regression direction through serial repeating of the
above pipeline with both directions.

The evaluation results demonstrate the robustness of our
ratiocination as shown in TABLE IV and Fig.9. Our regres-
sion strategy successfully restores the correct occlusion and
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Fig. 8. Qualitative comparisons against the state-of-the-art multi-reference interpolation algorithms with the Vimeo-90K Septuplet dataset. The middle frames
generated by JNMR have clear high-frequency structures and few artifacts compared with other models when dealing with large and complicated motions.

Fig. 9. Qualitative comparisons with the different regression models and reconstruction strategies with the Vimeo-90K Septuplet dataset. It is noted that
JNMR generates reasonable motion with an exquisite visual appearance.

TABLE V
ABLATION RESULTS ON DIFFERENT NUMBERS OF HIERARCHICAL

STRUCTURES WITH MULTI-STAGE COMPENSATION

consistent patterns in handling complicated motions of the
sample. Moreover, the visualization of Ĩ0 verifies that JNMR
can interpolate motion with clear edge details and few artifacts.
Notably, our reliable kinematic model is robust for different
dynamic visual scenes.

2) Feature Learning and Frame Synthesis: As described
in Sec.III, an appropriate network architecture is explored to
retain semantic information favorable for motion regression.
The coarse-to-fine synthesis enhancement module is imple-
mented to preserve finer details, with the different resolution

Fig. 10. Qualitative comparisons with different motion estimation methods
with the Vimeo-90K Septuplet dataset. Flow-based motions are able to reduce
artifacts but extract less complicated motion information.

motions integrated into the final frame. TABLE V shows the
performance of the network with different numbers of hierar-
chical spatial structures illustrated in Eq.16. Model I, which
has five hierarchical spatial structures, does not outperform
the JNMR. It indicates that more complex feature extrac-
tion structures are not very helpful for frame reconstruction
and motion regression but also bring about an increase in
parameters. In addition, the multi-stage compensation strategy
with a few parameters improves the performance compared to
Model II which has only up-sampling operations. To verify the
efficiency of the coarse-to-fine synthesis enhancement module,
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Fig. 11. The qualitative evaluation of extrapolation on the DAVIS dataset. The moving targets in the frame sequence are indicated by the calibration of the
black cross.

TABLE VI
THE ABLATION RESULTS ON DIFFERENT SOURCE FEATURES
FOR COARSE-TO-FINE SYNTHESIS ENHANCEMENT MODULE

TABLE VII
ABLATION RESULTS ON DIFFERENT MOTION ESTIMATION METHODS

TABLE VIII
ABLATION RESULTS ON THE DIFFERENT NUMBERS OF

REFERENCE FRAMES WITH THE GOPRO DATASET

we conduct an ablation study on source features of different
resolutions. As described in TABLE VI, the multi-stage extrac-
tion influences the visual details laterally. Besides, GridNet has
proven effective in multi-scale feature fusion through Model
V. In addition to the advantages in quantitative evaluation, our
method can also restore comprehensive structures, in contrast
to the other ablation methods shown in Fig.9.

3) Flow-Based Motion Estimation: To further verify the
universality of our method, the pre-trained LiteFlowNet [64] is
utilized to generate optical flow motions instead of deformable
convolution denoted as JNMR-flow. JNMR-flow can also
achieve good VFI performance, but uses more model parame-
ters, as illustrated in TABLE VII. However, the whole network
is mainly designed toward the feature-level, which leads to the
lower interpolation performance of JNMR-flow compared to
the kernel-based JNMR. In addition, Fig.10 indicates that the
pixel-level optical flow of JNMR-flow is still inferior to the
feature-level offset map of JNMR in catching large motions.

TABLE IX
VIDEO FRAME EXTRAPOLATION: QUANTITATIVE COMPARISONS WITH

THE VIMEO-TRIPLET AND ADOBE240 WITH STATE-OF-THE-ART
METHODS. THE NUMBERS IN BOLD AND UNDERLINE INDICATE

THE BEST AND THE SECOND BEST PSNR(DB) AND SSIM
RESULTS WITH PARAMETERS(#P.). THE RESULTS OF

OTHER METHODS ARE CLONED FROM [47] AND [53]

4) The Number of Reference Frames: To validate the influ-
ence of the reference frame number, we input 6 reference
frames to interpolate the intermediate frame, denoted as
JNMR-6f. Particularly, the first and last frames of 4-frame
input and 6-frame input from GoPro dataset are constant
in different models. Due to the increase in the number of
reference frames, the intermediate motion estimation is more
accurate. Therefore, as illustrated in TABLE VIII, the results
of JNMR-6f are slightly higher than those of the 4 reference
frames (JNMR). The two models remain consistent overall and
have similar performance, demonstrating the generalization of
JNMR on long sequences.

D. Extension for Extrapolation

To further explore the extension of the motion regression,
we follow the work DVF [55] to conduct JNMR in the video
frame extrapolation to generate future frames with several
reference frames. In detail, we predict the next frame utilizing
two consecutive frames and make a quantitative evaluation
with the Vimeo-Triplet and Adobe240 [66] datasets. As
shown in TABLE IX, JNMR achieves improvements on most
evaluation indicators with fewer parameters. The qualitative
evaluation results on the DAVIS dataset are shown in Fig.11.
The predicted objects in JNMR have the same relative position
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compared to ground truth, which demonstrates the effective-
ness of JNMR in maintaining the temporal consistency of
moving objects.

V. CONCLUSION

In this paper, we conduct an analysis on the importance of
long-term dynamics in the task of video frame interpolation.
To overcome the challenge of large and complicated motion
synthesis, a joint non-linear motion regression (JNMR) strat-
egy is designed to introduce multi-variate non-linear regression
for interpolation. Our method formulates the kinematic tra-
jectory as joint multi-stage quadratic models and achieves
accurate and consistent motion prediction. Furthermore,
regression-driven feature learning and coarse-to-fine synthesis
enhancement modules are explored to maintain global struc-
tures and complement details for regression. The experimental
results demonstrate the superior performance and robustness
of JNMR compared to other state-of-the-art methods.
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