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Abstract—The real-time generation of editable mesh animations in XR applications has been a focal point of research in the XR field.
However, easily controlling the generated editable meshes remains a significant challenge. Existing methods often suffer from slow
generation speeds and suboptimal results, failing to accurately simulate target objects’ complex details and shapes, which does not
meet user expectations. Additionally, the final generated meshes typically require manual user adjustments, and it is difficult to generate
multiple target models simultaneously. To overcome these limitations, a universal control scheme for particles based on the sampling
features of the target is proposed. It introduces a spatially adaptive control algorithm for particle coupling by adjusting the magnitude of
control forces based on the spatial features of model sampling, thereby eliminating the need for parameter dependency and enabling
the control of multiple types of models within the same scene. We further introduce boundary correction techniques to improve
the precision in generating target shapes while reducing particle splashing. Moreover, a distance-adaptive particle fragmentation
mechanism prevents unnecessary particle accumulation. Experimental results demonstrate that the method has better performance in
controlling complex structures and generating multiple targets at the same time compared to existing methods. It enhances control
accuracy for complex structures and targets under the condition of sparse model sampling. It also consistently delivers outstanding
results while maintaining high stability and efficiency. Ultimately, we were able to create a set of smooth editable meshes and developed
a solution for integrating this algorithm into VR and AR animation applications.

Index Terms—Particle Systems, Control Particles, Virtual Environments, Augmented Reality Application

1 INTRODUCTION

Particle control generation technology effectively bridges the gap be-
tween geometry-based target models and particles to generate similar
editable meshes, increasingly becoming a cornerstone of computer
graphics. These techniques have a variety of applications, from cre-
ating real-time VR/AR interactive scenes to movie effects. However,
in traditional Lagrangian methods, the challenge lies in the excessive
reliance on parameter adjustments to control particle generation for in-
dividual targets. This challenge leads to difficulties in controlling when
multiple diverse targets coexist within a scene. Additionally, existing
methods often face challenges when dealing with intricate geome-
tries. Control issues arise, particularly when the target model exhibits
complex shapes or sparse sampling, leading to hollowing or particle
splashing phenomena. In contrast to 3D reconstruction methods, they
are unable to reconstruct intricate hollow models and individual target
models.

Traditional Lagrangian methods for particle control, such as the
constraint control force proposed by Zhang et al. [59] (PBFC) and
the skinning mechanism by Lu et al. [23] (RSCF), Their skinning
mechanisms still exhibit noticeable drawbacks, such as the inability to
preserve target details or mitigate control effects accurately. Schoent-
gen et al. [44] (LCAT) has introduced the use of precomputed templates
to assist artists in achieving their desired outcomes more effortlessly.

• X. Ban, C. Yao and X. Wang are the corresponding authors.
• X. Zhou, X. Ban is with Beijing Advanced Innovation Center for Materials

Genome Engineering, School of Intelligence Science and Technology,
University of Science and Technology Beijing. E-mail:
xiaoyongyuan@xs.ustb.edu.cn, banxj@ustb.edu.cn.

• C. Yao is with School of Computer and Communication Engineering,
University of Science and Technology Beijing and Key Laboratory of
Advanced Materials and Devices for Post-Moore Chips, Ministry of
Education. E-mail: yaochao@ustb.edu.cn.

• X. Wang and Y. Xu are with School of Intelligent Science and Technology,
University of Science and Technology Beijing. E-mail:
wangxiaokun@ustb.edu.cn, xuyanruiedw@me.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Fig. 1: The control animations crafted as editable meshes, can be applied
in real-time to VR and AR applications.

Nevertheless, this technique is primarily suited for short-term dynamic
shape control and struggles to maintain object shapes accurately over
extended periods. Zhou et al. [60] (Weighted) proposed controlling
the fluid based on the sampling ratio, but their method only exhibits
better control effectiveness in simplified models and may lead to situa-
tions of excessive control. As we aim to create a freely editable mesh
ultimately, we also compared algorithms for mesh generation using
3D Gaussian Splatting [18] (3DGS) methods. Tang et al. [50] could
generate a mesh from a single-view image, but due to the limitation of
single-view images, the generated mesh lacks a significant amount of
information. Additionally, due to constraints inherent in 3DGS, they
are unable to generate models with cavities. Antoine et al. [14] directly
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performs mesh reconstruction on the results of 3DGS. By replicating
their method, we found that the effectiveness of their mesh genera-
tion is not optimal. Furthermore, the meshes they generate cannot be
recognized by existing skeletal plugins for automatic skeletal insertion.

To overcome the challenge of controlling the generation of multiple
targets, we propose a versatile and user-friendly control framework
for creating dynamic animations intuitively and effectively. The pa-
per opted for blue noise sampling [17], which effectively captures the
intricate details of the targets. A weighted spatially adaptive control
mechanism for particle coupling is proposed. It aligns with the spatial
distribution of control particles, enabling precise formation of target
shapes. Additionally, boundary correction techniques are introduced
to prevent boundary degradation, which significantly reduces the oc-
currence of particle splashing. A pioneering aspect of this research is
the distance-adaptive particle fragmentation mechanism, which dynam-
ically adjusts particle coupling based on particle distances and control
parameters. It ensures the avoidance of unnecessary accumulation for
the final shape. With these advancements, it achieves relatively precise
and rapid dynamic generation of target shapes.

In summary, the main contributions include:
• An adaptive particle bond optimization algorithm leveraging the

target model’s spatial sampling features for precise control force
calculation, which enhances the speed of the generation process,

• An algorithm combining blue noise sampling and boundary cor-
rection with an adaptive bond-breaking mechanism, which applies
boundary forces to confine particles within the target model and
dynamically adjusts based on density and distance, thereby en-
hancing result precision,

• A solution capable of directly generating editable meshes and
automatically embedding skeletal animations. It can be applied
in real-time to AR and VR applications.

2 RELATED WORK
Dynamic particle control is essential in the field of animation, and
generating editable meshes is also a popular research topic in computer
graphics, with many researchers offering various solutions.

2.1 Dynamic Control Of Static Shapes
Control based on key-frame: Treuile et al. [53] used optimization
techniques to match keyframe shapes in their paper. Meanwhile, Hong
and Kim [15] used keyframe potential fields for smoke simulations.
While Bergou et al. [3] enriched simulations with physical details,
Chu et al. [7] derived velocity fields from single frames. Though
most studies focus on 2D simulations, there’s a growing interest in
the realism of 3D simulations and their control mechanisms. Pan et
al. [35, 37] introduced optimization techniques to improve simulation
efficiency. Despite their visual success, these methods lack interactive
simulation. Later, Pan [36] used direct deformation grids in simulations,
showing promising results in areas like smoke simulations but having
limited overall applicability.

Control based on target model: Researchers have explored var-
ious methods for guiding particle formation using specific control
models. Fattal and Lischinski [10] proposed two methods: one for
directing smoke to a set density field and another to limit smoke diffu-
sion. Raveendran et al. [39] suggested using high-density target control
grids to influence simulation pressure, while Zhang et al. [59] used
models with forces like density and springs to shape particle surfaces.
Cornelis et al. [8] delved into particle-target interactions, and Lu et
al. [23] provided a particle control approach from rigging perspectives.
Schoentgen et al. [44] recommended pre-defined control templates to
aid artists in shaping particles.

2.2 Control Techniques For Detail Modules
Enhancement and control of low-resolution details: Nielsen et
al. [33] used low-res input to enhance high-res smoke simulations,
adding more detail while maintaining the overall appearance. Ex-
panding on this, Nielsen et al. [31, 32] introduced an Eulerian-based
optimization, improving simulation efficiency. Forootaninia et al. [11]

merged high-frequency particle dynamics with low-frequency guiding
fields for detailed smoke simulation. Sato et al. [41], building upon
this, improved smoke shape control using Forootaninia’s method.

Dynamic physical field-based control: McNamara et al. [26] uti-
lized gradient-based optimization for particle control under physical
constraints. Shi and Yu [46] corrected particle discrepancies using feed-
back forces, while Sato et al. [43] employed time-varying potentials to
guide particle movement. Thuerey [51] introduced grid-based space-
time deformation for diverse phenomena. Inglis et al. [16] worked on
aligning guiding and target velocity fields. Meanwhile, Rasmussen et
al. [38] and Stomakhin and Selle [47] harnessed constraints and bound-
ary conditions for enhanced particle control.

2.3 Data-driven Control Methods

Ren et al. [40]focuses on developing a versatile controller for dynamic
systems involving fluid and solid interactions. It emphasizes adapting
to various dynamic behaviors and multiple tasks without re-training.
Morton et al. [29] introduce a method based on Koopman theory for
predicting fluid flow dynamics. Kim et al. [19] propose a CNN-based
generative model for efficient fluid simulation. Li et al. [21] develop
dynamic particle interaction networks. Ummenhofer et al. [54] presents
a novel approach using continuous convolutional networks for fluid
dynamics simulation. Brunton et al. [6] provides a comprehensive
overview of machine learning in fluid mechanics. Tang et al. [49]
explore deep reinforcement learning for active flow control in fluid
dynamics.

2.4 Integrated Control Technologies Within Systems

Fluid control research began with Foster and Metaxas [12], who ad-
justed physical properties to guide fluid animations and introduced
actuators for interface purposes. Later, Mihalef et al. [27] presented
an intuitive wave simulation, though with limited wave profiles and
scripting capabilities. Advancements in fluid simulation have led to in-
novative techniques. Bojsen-Hansen and Wojtan [4] devised a method
for seamlessly integrating precomputed liquid animations. Manteaux et
al. [25] introduced a sculpting tool for artists to edit fluid surfaces
without altering the entire simulation. Stuyck and Dutre [48] improved
this tool in terms of speed and usability. Sato et al. [42] developed a
technique to merge different fluid data for diverse animation effects, fo-
cusing on mesh simulations. Sevinc et al. [45] developed a VR system
for engineers to design autonomous vehicle test scenarios, which out-
performs traditional methods in both accuracy and efficiency. Zhang et
al. [58] introduced a natural VR control for drone viewpoints, employ-
ing adaptive origin updates. Ogawa et al. [34] crafted a VR jumping
experience, ’PseudoJumpOn’, simulating real jump dynamics with-
out physical steps. Lastly, Bozgeyikli et al. [5] launched ’Tangiball’,
a tangible VR football game with enhanced user immersion and no
additional motion sickness.

2.5 Mesh reconstruction based on 3DGS radiance fields

The mesh reconstruction method based on 3DGS radiance fields can
reconstruct point cloud data from 3DGS into mesh grids. Antoine et
al. [14] align Gaussian particles with the scene surface using regulariza-
tion terms, binding Gaussian particles to the mesh surface to generate
an editable mesh. Tang et al. [50] transform diffusion models and
three-dimensional Gaussian matrices into texture meshes, enabling the
reconstruction of three-dimensional meshes from single-view images.
Joanna et al. [55] parameterize each Gaussian component with the
vertices of mesh faces, initializing the mesh based on input or estimated
meshes and defining the positions of Gaussian particles on the mesh.
This allows for shape modifications by adjusting mesh positions, but the
method has limited mesh degrees of freedom. Xie et al. [57] employ
the Material Point Method (MPM) to seamlessly integrate physical
simulation and visual rendering, enabling more physically accurate
material deformation. However, this method is still constrained by
Gaussian reconstruction limitations, offering limited degrees of free-
dom in simulation and lacking real-time applicability.
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Table 1: Meaning of the main formula symbols.

Symbol Meaning Symbol Meaning Symbol Meaning
Dp Particle dataset λ Lagrangian multiplier W Smoothing kernel function
xp The position of particles a The acceleration of particles ω Control particle weight proportion
vp The velocity of particles ∆x Particle displacement ρc The density of controlparticles
mp The mass of particles Dc Control particle dataset Hc Support radius of control particles
ρp The density of particles xc The position of control particles ϕ Weighted coefficient
Hp Support radius of particles vc The velocity of control particles ϕ̃ Normalized weight coefficient
F The force on particles mc The mass of control particles

3 PRELIMINARY
We employ Position-Based Fluid (PBF) [24] simulation to compute fun-
damental particle motion, utilizing optimized blue noise sampling [20]
of the target model as control particles.

3.1 Fundamental Particle Motion
The PBF approach is an evolution built upon the foundations of the
Position-Based Dynamics (PBD) [30] and Smoothed Particle Hydrody-
namics (SPH) [28] methodologies. Unlike traditional physical process-
solving methods, it directly updates the object based on constraint
relationships between spatial positions. The PBF technique enhances
PBD by assimilating concepts from SPH, enabling its applicability to
particle dynamics. The PBF algorithm can directly satisfy constraint
equations by modifying the positions of particles, making it more con-
venient for particle control.

3.2 Sampling Control Particle
Witkin et al. [56] used an implicit surface sampling method to generate
boundary particles; however, their approach only allows for changes in
sampling results by replacing the implicit function, making it unsuitable
for sampling complex models. Bell et al. [1] generates basic surface
particles using signed distance and allows the particles to be uniformly
distributed with a certain offset from the original mesh surface. How-
ever, this method produces imprecise results and is only suitable for
sampling simple models. We conducted voxelization sampling [9] and
blue noise sampling on the model and, through comparative analysis of
results and experiments, found that blue noise sampling yields superior
outcomes. Consequently, we have adopted the most optimized blue
noise sampling technique available [20]. Using blue noise in conjunc-
tion with DFSPH [2] spatial sampling on the initial triangular mesh of
the model, a more uniform and fuller particle surface can be achieved.

The green module in Figure 2 represents the specific implementation
process of the algorithm. When importing data into the experimental
environment, the control particles are initially weighted based on spatial
sampling results to adaptively adjust the magnitude of applied forces.
This facilitates the particles to quickly fill into challenging edge regions,
thereby enhancing generation speed. Subsequently, the control particles
are designed to attract surrounding particles. Even with precise sam-
pling, sampling gaps inevitably occur in complex large-scale models.
To enhance control robustness and efficiency, the algorithm first guides
particles to regions with higher densities of control particles to swiftly
establish the main outline, followed by a detailed filling process. This
ensures the efficiency and effectiveness of the results.

Subsequently, the details are refined. To maintain particles within the
model during generation, a corrective force is applied to re-constrain
particles that stray outside. It enhances stability. Finally, to ensure that
the generated shape remains consistent over time, an adaptive breaking
mechanism is introduced to the particle bonds. It prevents excessive
expansion of the model over time.

The red module in Figure 2 represents our multi-target scenario
design, where multiple target models are not contained within a single
model file. Instead, they accept multiple model files as input, generating
multiple model datasets. Each model independently controls the fluid.

4 METHOD
This section presents the details of our method. In Figure 2, the blue
modules represent the core components of our algorithm, with the

first module involving the input of basic data for sampling particles
and control particles into the system. The method incorporates three
stages: spatially adaptive weighted control of particle bonds (Section
4.2), external and corrective forces acting on the particles (Section 4.3),
and spatial distance-adaptive particle bond breaking (Section 4.4).

Our algorithm not only enhances precision and efficiency but also
adeptly handles missing sample particles. Furthermore, it generates
unique animations based on model features. Through Figure 3, we
illustrate the advantages of our algorithm. Despite the presence of gaps
in the model’s sampling, the final output remains unaffected. Instead,
our algorithm leverages sampling features to generate distinctive anima-
tions, prioritizing dense regions with controlled particles while filling
in the missing sampling areas. Other methods may suffer from control
instability due to sampling deficiencies, resulting in particle splattering.

4.1 Basic Control Process

We will introduce our main symbolic meanings in conjunction with
Table 1. Particle data Dp =

(
xp,vp,mp,Hp,ρp,W,F,λ ,a,∆x

)
and con-

trol particle data Dc = (xc,vc,mc,Hc,ρc,W,ω,ϕ) are inputted into the
experimental environment. The particle information Dp encompasses
several attributes: xp represents the particle’s 3D position in space, vp
its velocity, mp its mass, Hp its support radius, ρp its density, and W its
smoothing kernel function. For density estimation, we use the Poly6
kernel, while the Spiky kernel is employed for gradient computations.
Additionally, F denotes the external forces acting on the particle, λ

the Lagrangian multiplier used for displacement calculations, a the
acceleration of the particle, and ∆x the displacement for the next time
step. The control particle information Dc similarly includes xc for the
3D position of the control particle in space, vc is the velocity of control
particles, we can make the control particles move through vc, mc its
mass, Hc its support radius, ρc its density, W its smoothing kernel
function, and ω is the weight obtained by control particles based on
the spatial characteristics of the sampling results, ϕ is the weighting
coefficient obtained through weight value processing.

The green module in Figure 2 represents the specific implementation
process of the algorithm. When importing data into the experimental
environment, the control particles are initially weighted based on spatial
sampling results to adaptively adjust the magnitude of applied forces.
This facilitates the particles to quickly fill into challenging edge regions,
thereby enhancing generation speed. Subsequently, the control particles
are designed to attract surrounding particles. Even with precise sam-
pling, sampling gaps inevitably occur in complex large-scale models.
To enhance control robustness and efficiency, the algorithm first guides
particles to regions with higher densities of control particles to swiftly
establish the main outline, followed by a detailed filling process. This
ensures the efficiency and effectiveness of the results.

Subsequently, the details are refined. To maintain particles within the
model during generation, a corrective force is applied to re-constrain
particles that stray outside. It enhances stability. Finally, to ensure that
the generated shape remains consistent over time, an adaptive breaking
mechanism is introduced to the particle bonds. It prevents excessive
expansion of the model over time.

The red module in Figure 2 represents our multi-target scenario
design, where multiple target models are not contained within a single
model file. Instead, they accept multiple model files as input, generat-
ing multiple model datasets. Each model independently controls the
particle.
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Fig. 2: The blue modules represent the main components of our algorithm, the green modules depict the overall control process, and the red module
demonstrates how our method enables the simultaneous generation of multiple targets with different characteristics within a single scene.

4.2 Spatially Adaptive Weighted Control Of Particle Bonds

4.2.1 Adaptive Spatial Weighting

To enhance the representation of surface details on controlled parti-
cles and accurately guide particles under weighted field conditions,
particularly for complex topological target models with high surface
area-to-volume ratios, a weight propagation algorithm is developed
based on Smoothed Particle Hydrodynamics (SPH). This allows for the
weighted influence of control particles based on their weights, thereby
strengthening the control over the external surface of the target model
and accelerating the formation of the model shape. The first step in-
volves identifying the information of the weighting center:

¯||x||= ∑i (ωi · ||xci ||)
∑i ωi

. (1)

For control particle i, ¯||x|| represents the L2 norm of the three-
dimensional positional information. The specific weight coefficients ωi
are calculated using the following formula:

ωi =
Wi

(
xci − xc j ,Hc

)
∑ j W j

(
xci − xc j ,Hc

) , (2)

W is a smoothing kernel function, while the Spiky kernel is employed
for gradient computations. In the entire text, i represents a specific
property of the current particle, while j represents a specific property
of the particles adjacent to i. The weight of a control particle increases
as the number of surrounding control particles decreases, and then the
control particles are weighted accordingly:

ϕi =
∣∣||xci ||− ¯||x||

∣∣ , (3)

ϕ is the weighting coefficient obtained through weight value processing.
For ease of subsequent calculations, the weighted data is normalized:

ϕ̃ i =
ϕi −ϕmin

ϕmax −ϕmin
+ c, (4)

c is a constant. The normalized weight coefficient ϕ̃i is always positive
before taking the logarithm, where 0.1 > c > 0.

The magnitude of particle position updates is adjusted based on the
weighted values:

∆x = αϕ̃ iλ∇xC(x), (5)

α is a proportional coefficient that can influence the speed of particle
motion. It should not be excessively large, as this may lead to instability
in the generation process. C(x) represents a constraint function. The
proportional scaling coefficient λ is derived from the equation used in
PBF:

λ =− Ci (x1, . . . ,xn)

∑k |∇xkCi (x1, . . . ,xn)|2 +E
. (6)

Where E is a user-specified relaxation parameter that is constant, E
purpose is to prevent the denominator from becoming extremely small,
which could cause the value of λ a to become excessively large and
lead to instability.

The upper part of the second blue module in Figure 2 represents a
spatial weighting schematic. The fewer neighboring control particles
around a given control particle, the greater the control force required to
ensure rapid and accurate filling of the target shape. In this represen-
tation, control particles are denoted by yellow particles, with a more
intense yellow indicating a stronger control influence.

4.2.2 Motion Control
We control the flow of the particles by satisfying the density constraints.
When the density of control particles is higher, the density of surround-
ing particles increases to meet the constraints, ensuring that particles
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Fig. 3: The I module represents the target model, with prominently highlighted red circles indicating the areas of focus for comparison. The II module
left demonstrates how modeling the wing section of a building using a quadrilateral mesh may result in sampling deficiencies, as indicated by the
highlighted regions within the red circles. The II module right outlines the generation process of the method under sparse sampling, where the
target process is precisely shaped based on the spatial distribution characteristics of sampling points. The III module depicts the final comparison
between the effects generated by our method and those produced by other methods. Other methods may suffer from control instability due to sparse
sampling, leading to particle splattering and shape distortions.

first flow towards the main sampled area and then fill in lower-density
regions. This process ensures a faster generation and a better fit for the
target model. The constraint algorithm is represented as follows:

Ci (xci) =
ρpi

ρci

−1 ≈ 0. (7)

In this context, ρpi represents the density of particles xpi surrounding
the control particles, and ρci denotes the density of control particles in
the vicinity. The specific equation for calculating density is as follows:

ρpi = ∑
j

mp jW
(
xci − xp j ,Hc

)
, (8)

ρci = ∑
j

mc jW
(
xci − xc j ,Hc

)
. (9)

Finally, the displacement of the particles should occur along the direc-
tion of the negative density gradient:

∆xcontrol
i =−αϕ̃ i

∑ j λmp j ∇W
(
xci − xp j ,Hc

)
∑ j mc jW

(
xci − xc j ,Hc

) . (10)

As depicted in the two-dimensional schematic beneath the second
blue module and within the green area in Figure 2, yellow particles rep-
resent control particles, red indicates selected control particles, and blue
signifies controlled particles. In this approach, particles are attracted
and adhere to control particles. However, unlike conventional methods,
once the particle count reaches a predetermined density around the
control particles, no additional particles are attracted. This prevents
particles from exceeding the boundaries formed by the control particles
and enables rapid formation of critical contours.

4.3 Boundary Correction
The particles themselves are influenced by external forces F , such as
viscosity Fvis, surface tension Fsur, drag forces Fdrag, gravity Fg, and
boundary correction forces Fcorr. We apply the boundary correction
force to rectify the particle’s motion.

F
(
xp
)
= Fvis

(
xp
)
+Fsur

(
xp
)
+Fdrag

(
xp
)
+Fg

(
xp
)
. (11)

For the treatment of viscosity Fvis, the artificial viscosity approach
XSPH is employed to facilitate the conservation of computational
resources:

Fvis → a =
η

h ∑
j

mp

ρp j

(
vpi − vp j

)
W

(
xpi − xp j ,Hp

)
, (12)

η represents the viscosity coefficient I have set (η = 0.01), h denotes
the time step, and ρp j signifies the density of particles xp j surrounding
a given particle xpi . The surface tension Fsur was calculated using
Zorilla’s [61] method through Monte Carlo integration:

Fsur → a =−σκ n̂i

mp
, (13)

σ is the surface tension coefficient I have set (σ = 0.05), κ represents
the local curvature, and n̂i is the unit normal vector of the particles. The
drag force Fdrag was calculated using Gissler’s [13] method:

Fdrag → a =
s
2

ρav2
irelCdA, (14)

s is the scaling factor set by us (s = 0.01). ρa represents the density of
the air, we choose ρa = 1.2931kg/m3 in this paper. v2

irel is the square
of the relative velocity difference, that is, the square of the difference in
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velocity between the particles and the air
(
virel = vp − va,va = [0,0,0]

)
.

Cd is the drag coefficient of the particles. A is the cross-sectional area
exposed to the particles. Gravity Fg is represented by a downward
gravitational acceleration a = [0,−10,0]. The boundary correction
force Fcorr is an adjustment to the acceleration to eliminate acceleration
in the normal direction:

Fcorr → a =−n̂(n ·a) , (15)

n =−∑
j

mc∇W
(
xci − xc j ,Hc

)
, (16)

n is the negative directional vector controlling the particle density
gradient. The dot product is used to obtain the scalar magnitude of
the acceleration in this direction, which is then multiplied by the unit
vector n̂ to obtain a directional vector.

Algorithm 1 Core Algorithm Process

1: for all particles i do
2: calculate predicted acceleration a∗i ⇐ ai +

F
mp

3: predict velocity v∗i ⇐ vi +∆ta∗i
4: predict displacement x∗i ⇐ xi +∆tvi
5: end for
6: if particles controlled by control particles then
7: for all controlled particles i do
8: calculate acceleration a∗i ⇐ Fcorr, update v∗i ,x

∗
i

9: calculate the displacement of controlled ∆xcontrol
i

10: update particle positions x∗i ⇐x∗i + ∆xcontrol
i

11: end for
12: else
13: for all particles i do
14: calculate the displacement using the PBF method ∆xPBF

i
15: update particle positions x∗i ⇐x∗i +∆xPBF

i
16: end for
17: end if
18: for all particles i do
19: update velocity vi ⇐ (x∗i −xi)

∆t

20: update acceleration ai ⇐ (vi−v∗i )
∆t

21: update position xi ⇐ x∗i
22: end for

4.4 Spatial Distance-adaptive Particle Bond Breaking
We introduce an adaptive control that dynamically adjusts the mag-
nitude of control forces to prevent excessive clustering of particles.
Specifically, when particles are distant from their control counterparts,
the control force is amplified, driving the particles rapidly toward the
control points. Conversely, as particles approach their targets, the con-
trol force diminishes, ensuring stability within the designated region. To
further enhance adaptability, an automatic parameter tuning approach
is adopted to adjust parameters based on real-time model states and
key performance indicators. This adaptiveness ensures model stability
across diverse particle behaviors and environmental conditions while
minimizing the need for frequent manual intervention.

Based on the aforementioned observations, a novel adaptive algo-
rithm is proposed, aiming at dynamically adjusting constraint forces
through density to achieve more refined, stable, and efficient particle
control:

f(x) =
ρci

ρpi x+ρci

. (17)

When the ρpi density is lower, for the same value of x, the correspond-
ing function f(x) is larger. However, when the density reaches a stable
state, the greater the value x, the smaller the function f(x). Updating
the position of particles:

∆xadaptive
i = f

(
xci − xpi

) xci − xpi∣∣xci − xpi

∣∣ , (18)

Hc
∗ = f(Hc)Hc. (19)

When there are more particles surrounding a control particle, resulting
in a higher density, the control force decreases. Furthermore, when∣∣xci − xpi

∣∣ > Hc
∗, ∆xadaptive

i = 0. Relying solely on the method of
adaptively adjusting constraint strength, minor particle accumulation
is observed. To address this, an additional adaptive mechanism is
introduced so that particles exceeding the density threshold can be
removed from the control.

Algorithm 2 Adaptive Control Algorithm

1: if
∣∣xci − xpi

∣∣> Hc
∗ then

2: for all controlled particles i do
3: calculate ∆xadaptive

i = 0,∆xcontrol
i = 0

4: calculate particle positions xi ⇐x∗i
5: end for
6: else
7: for all controlled particles i do
8: calculate ∆xadaptive

i
9: calculate particle positions xi ⇐x∗i + ∆xadaptive

i +∆xcontrol
i

10: end for
11: end if

As illustrated in the fourth blue module and the corresponding green
module in Figure 2, the yellow solid line defines the adaptive control
range of the controlled particles, while the blue dashed line represents
the search radius of the particles. Particles take the farthest controlled
particle as the reference target, searching for controlled particles within
this radius. The blue solid line indicates the selected and constrained
controlled particles, the red solid line represents the remaining unse-
lected controlled particles, and the absence of a connecting solid line
indicates that the particle is not influenced by controlled constraints.
It’s noteworthy that as the number of particles surrounding a control
particle increases, leading to a rise in density, the adaptive control range
of the control particle shrinks proportionally to this density variation.
Particles exceeding this adaptive control boundary will no longer be
influenced by the constraint forces. Importantly, these modifications are
designed not to impact the original search radius Hc of control particles.
Through this approach, we’ve optimized control in a more targeted
manner, ensuring the precision and stability of the model across diverse
scenarios.

5 AUTOMATIC EDITABLE ANIMATION SOLUTION
Creating a mesh that can automatically recognize skeletal free editing
is essential for real-time applications in AR/VR. Both particle methods
and Gaussian reconstruction techniques often require surface recon-
struction of a large number of points. If the reconstruction process is not
properly managed, it can produce irregular meshes with excessive poly-
gon counts, resulting in unnecessary mesh data that does not accurately
represent the actual model. An excessive number of polygons increases
computational load and can hinder recognition by existing skeletal
identification plugins, complicating mesh editing and preventing the
import of created animation data. This poses significant challenges for
users.

Our algorithm addresses these issues. As shown in Figure 4, the
first step combines the particle data obtained from the control with our
mesh reconstruction method to create a smooth, editable mesh model.
This model can then be automatically recognized by existing skeletal
plugins, allowing for the insertion of skeletal information. In the second
step, users can apply their own animation data in conjunction with the
skeletal setup to create a movable model. In the third step, we validated
our method’s application in both AR and VR, demonstrating promising
results. Users can also independently edit rendering styles within these
environments.

5.1 Editable Mesh
To achieve the reconstruction of the particle surface, we have improved
the marching cubes [22] algorithm. Initially, we partitioned the space
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Fig. 4: This image demonstrates that the generated editable mesh can be recognized by skeletal plugins available in the market and automatically
integrated with skeletons. Developers only need to edit skeletal animations to create their desired animations.

and subdivided it into grids, each grid having eight vertices. It was
essential to determine whether a grid represented the interior or exterior
of a surface, giving rise to 28 = 256 possibilities. A lookup table was
utilized to represent the corresponding triangular facets, with surface
vertices calculated using linear interpolation. However, using the basic
Marching Cubes algorithm alone could result in uneven surfaces. To
address this issue, we implemented smoothing techniques on top of the
algorithm.

First, let’s define a triangle face as M, with vertices denoted as V and
edges as E. To achieve smoother surfaces, we need to displace vertex
V

′
:

V
′
=V +β∆V, (20)

∆V =
∑i

Wi(Vi−Vj ,HV )

∑ j Wj(Vi−Vj ,HV )
Vi

S
−Vi. (21)

Where β represents the smoothness coefficient within the range of 0 to
1, Vi represents the current vertex, V j represents all the edges adjacent
to the current vertex, W denotes the smoothing kernel function, Hv
represents the smoothing length. S represents the sum of the quantities
of adjacent particles. By calculating the weighted central position of
all adjacent vertices and moving all vertices towards this weighted
central position, we can make the constructed mesh surfaces smoother.
In order to reduce the size of the model by decreasing the number
of triangles while maintaining model accuracy, we adopt a method
where, in cases where a single edge has multiple vertices, we retain
only the two farthest vertices. This approach ensures that our generated
model, when combined with animations, runs efficiently and can be
applied seamlessly in virtual environments. The generated model can
be automatically recognized by plugins like Mixamo or Auto IK Rigger,
which allows for the insertion of skeletal features without issues related
to bone mapping. Subsequently, the skeleton can be freely edited in
Unity or Blender, enabling the creation of any editable animations.

5.2 Real-time AR and VR Application
To thoroughly validate the performance advantages of our algorithm,
we integrated it into AR and VR applications for comprehensive testing.

Initially, we focused on reconstructing editable meshes to ensure that
the models maintained a smooth and visually appealing appearance.
Regularized Marching Tetrahedra [52] is an excellent algorithm to re-
duce the number of reconstructed meshes, achieving results that are 3/5
of those obtained from the reconstruction of marching cubes. Using
our method, we achieved a significant reduction in memory usage;
specifically, the memory usage of this model has been reduced to be-
tween 1/11 and 1/4 of the original when compared to other control
algorithms using the Marching Cubes methods. As the number of parti-
cles increases and the model becomes more complex, the proportion
of memory reduction increases. This reduction is crucial for optimiz-
ing performance in real-time applications. Following the successful
reconstruction, we proceeded to combine controlled animations with
the freely editable meshes. This integration allowed us to seamlessly
import the animated models into the scene. In addition to the overall
animations, we also imported individual frame results, which provided
greater flexibility and control over the animation process. To ensure
that the particle animations were both seamless and of high mass, we
meticulously linked all experimental results together. This approach
enabled us to create dynamic mesh animations that not only looked re-
alistic but also performed efficiently in both AR and VR environments.
The combination of reduced memory usage and enhanced animation
capabilities demonstrates the effectiveness of our algorithm, providing
users with a robust tool to create immersive and interactive experiences.

6 EXPERIMENTS

This paper conducted extensive experiments on multiple scenes and
made comparisons with several state-of-the-art methods. Specifically,
we considered the PBFC [59], RSCF [23], LCAT [44], Weighted
Method [60], DreamGaussian [50] and Sugar [14]. The experimental
setup for this paper was carried out on a Dell desktop equipped with
an INTEL i7-9700 processor and 16GB RAM. The control process
was implemented using C++. All outputs were rendered offline using
the open-source software Blender and subsequently integrated into VR
environments.

Table 3 presents a statistical analysis of experimental data. The
rightmost column displays basic information for each scene, including
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Fig. 5: The figure compares the reconstruction results of seven methods across two different scenarios.

Fig. 6: Performance and operating parameters in the application.

the scene name, where "Particles" represents the number of particles
in the scene, and "Controls" represents the number of control particles.
In the multi-target experiment, the number of control particles consists
of three parts: the number for "Castle" is 69,405, for "Dog" is 5,666,
and for "Bunny" is 8,384. For each scene, the experimental results of
five different algorithms are compared. "Controlled Particles" refers
to the number of particles influenced by the control particles. "Error
Rate" indicates the rate of difference between the final formation and
the original three-dimensional positions of the controlled particles.
Calculate the average Euclidean distance error between the particles
generated in each frame and the positions of the target sampled particles.
"Per frame Time" represents the per frame time required to generate
the final effect, and "Memory" represents the operational memory
occupied during program execution. Figure 7 shows the rendering
results of several important experiments in this paper. The building
model experiment features the highest number of particles, and the
stability and accuracy of our method outperform other comparison
algorithms. The warrior model experiment is the most complex; the
warrior model generated in this paper, combined with our reconstruction
algorithm, enables skeletal mapping and editable applications. The
multi-target model experiment validates the stability of our algorithm
and demonstrates its capability to adaptively adjust control for any type
of model without the need to reset parameter settings.

6.1 Precise Control Results

This method demonstrates more accurate control results in both large
and small experimental environments compared to other methods. This
can first be observed in Table 3, where the number of controlled parti-
cles by this method is closest to the number of control particles. This is
due to the algorithm’s precision in acquiring the density of the control
particles and synchronizing control accordingly.

Table 2: Frame rate table for real-time application performance.

Frame Rate of AR Animation Generation Process 112.3(FPS)
Frame Rate of AR Editing Motion for Generated Results 52.5(FPS)

Frame Rate of VR Animation Generation Process 120.3(FPS)

6.2 Faster Generation Process
This method also shows significant efficiency gains. As observed
in Table 3, the generation time is the fastest in most scenarios, ex-
cept in smaller scenes (hand, dragon, dog) where it is slightly slower
than RSCF and LCAT. The RSCF and LCAT methods involve directly
and dynamically controlling the motion of control particle templates.
These methods exhibit better computational efficiency in smaller sce-
narios. However, in larger scenes, with an increasing number of control
particles, the computational load increases, leading to a decrease in
efficiency. The speed of generation is primarily due to the first core
algorithm, which utilizes spatial weighting to rapidly fill particles into
boundary areas. This approach, combined with controlling particle
density, addresses the issue of particle accumulation caused by spatial
weighting. This ensures that the main outline of the model is generated
quickly and then supplemented, greatly enhancing the efficiency of
generation.

6.3 Boundary Issues And Shape Preservation
In the experiment comparison video, featuring the dragon model, it’s
evident that the method employs boundary correction acceleration. This
technique prevents the dragon’s body from exceeding the boundary due
to control forces, thus avoiding body adhesion. Even if particles escape,
they are immediately compressed back into the model, enhancing the
robustness of the algorithm and ensuring particle stability. The compar-
ison video of the experiment demonstrates the long-term maintenance
of the shape of the model. In this test, the control duration is inten-
tionally extended. Notably, even with prolonged control, this method
effectively prevents excessive particle accumulation. This highlights
the effectiveness of the approach in maintaining the integrity of the
model over long periods.

6.4 Multi-target Control
The results of multi-target control generation demonstrate the superior
ability of the approach in controlling particle generation of multiple
models with diverse features within the same scene. Coupled with the
experimental data presented in Table 3 and Figure 7, the precise control
of the algorithm over each particle greatly saves time and memory
resources. Unlike other methods that require parameter adjustments to
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Fig. 7: A unified rendering comparison was made between the building model, warrior model, multi-target model, and the comparison method.

Table 3: The data results of all particle control generation methods.

Scene Method Controlled particles Error rate(%) Per frame Time(s) Memory(MB)

Hand PBFC 7,852 11.21 0.059 353
Particles RSCF 9,252 8.41 0.061 344
46,610 LCAT 9,053 8.03 0.047 342
Controls Weighted 10,655 6.73 0.066 354
9,582 Our 9,241 5.38 0.037 344

Dragon PBFC 11,310 5.01 0.101 352
Particles RSCF 6,879 26.23 0.083 337
46,610 LCAT 3,995 39.87 0.043 336
Controls Weighted 12,154 6.14 0.134 351
8,697 Our 8,050 2.88 0.024 334

Dog PBFC 34,433 11.08 0.112 371
Particles RSCF 7,522 59.16 failure 344
46,610 LCAT 10,197 42.32 failure 343
Controls Weighted 33,843 11.09 0.156 366
12,038 Our 14,639 7.60 0.043 355

Vase PBFC 102,311 22.59 1.212 1,024
Particles RSCF 18,086 failure failure failure
252,810 LCAT 17,599 failure failure failure
Controls Weighted 87,051 17.71 1.231 924
33,001 Our 34,321 5.94 0.433 851

Building PBFC 308,761 19.23 1.974 5,120
Particles RSCF 238,917 52.61 2.733 3,891
610,731 LCAT 215,582 53.50 2.199 3,789
Controls Weighted 276,610 19.33 1.598 3,686
189,612 Our 222,761 7.08 1.296 2,970

Carbontube PBFC 61,879 9.93 0.540 2,150
Particles RSCF 1,933 failure failure failure
113,288 LCAT 1,954 failure failure failure
Controls Weighted 52,328 9.41 0.479 1,638
21,912 Our 39,678 4.12 0.157 826

Warrior PBFC 46,869 19.95 0.646 1,998
Particles RSCF 39,785 16.61 1.644 1,442
113,288 LCAT 42,774 18.50 1.749 1,376
Controls Weighted 49,675 16.13 0.886 1,776
42,741 Our 35,414 7.18 0.342 1,199

Multi-target PBFC 73,681 24.39 2.916 9,830
Particles RSCF 123,969 failure 2.512 5,529
151,686 LCAT 119,643 failure 1.367 5,324
Controls Weighted 76,123 19.39 1.771 8,806
83,455 Our 34,321 4.25 0.739 4,505

tailor control forces to match model features, this algorithm operates
without any need for such adjustments. Instead, it dynamically allo-
cates the force exerted on each particle based on the model’s sampling
features. This capability enables us to precisely control the generation
of multiple target shapes within a single scene.

6.5 Comparison of 3DGS Mesh Reconstruction

Figure 5 compares the latest 3DGS mesh generation methods. From
the experimental results, it is observed that due to limited perspectives,
DreamGaussian struggles with fully segmenting cavity models in image
segmentation, making it challenging to model cavities and difficult to
supplement missing information in diffuse models. The results gener-
ated by Sugar are comparatively poor, possibly because the training
images have excessively uniform colors, resulting in incomplete model

generation. However, the 3DGS point cloud models trained on these
images pose no issues. Nevertheless, the limitations of 3DGS prevent
it from effectively removing background noise, rendering the generated
models unsuitable for direct editing.

6.6 Application Performance Testing
In Figure 6 and Table 2, we show how our results are applied in a
virtual environment. The animation generation process and subsequent
model movement both maintain a satisfactory frame rate (FPS). This
performance is important for ensuring a smooth user experience. There
is also potential for further development of the application. Currently,
we have not optimized it, and with appropriate optimizations in spe-
cific scenarios, we could improve operational efficiency. By refining
aspects such as rendering and animation handling, we could enhance
performance without compromising functionality. Overall, these results
indicate the effectiveness of the algorithm while suggesting areas for
future improvement.

7 LIMITATIONS
Currently, the algorithm has certain limitations. We are unable to per-
form more detailed region segmentation for objects. While we can
model elements such as armor and capes, we cannot control them indi-
vidually during animation or simulate them separately. Additionally,
due to the relatively low number of particles used in our particle control,
some precision is lost during reconstruction. However, we are supple-
menting our experiments with high-resolution data, and initial results
have been promising. This indicates that our algorithm is capable of
handling particle control on the order of tens of millions.

8 CONCLUSIONS
This paper utilizes particle control techniques based on the spatial
features of target models to achieve higher-precision editable mesh
generation without the need for parameter adjustments. It can simul-
taneously generate multiple targets. This method dynamically adjusts
control strength based on the spatial characteristics of the targets, ex-
celling in capturing intricate details of complex models. In multi-target
scenarios, it ensures rapid control of high-fidelity shapes while prevent-
ing particle clustering. It integrates editing and control animations into
virtual environments.
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smoke simulations. In ACM SIGGRAPH 2003 Papers, pp. 716–723. 2003.
2

[54] B. Ummenhofer, L. Prantl, N. Thuerey, and V. Koltun. Lagrangian fluid
simulation with continuous convolutions. In International Conference on
Learning Representations, 2019. 2
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