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Abstract

Diffusion-based Video Super-Resolution (VSR) is renowned for generating percep-
tually realistic videos, yet it grapples with maintaining detail consistency across
frames due to stochastic fluctuations. The traditional approach of pixel-level align-
ment is ineffective for diffusion-processed frames because of iterative disruptions.
To overcome this, we introduce SeeClear–a novel VSR framework leveraging
conditional video generation, orchestrated by instance-centric and channel-wise
semantic controls. This framework integrates a Semantic Distiller and a Pixel Con-
denser, which synergize to extract and upscale semantic details from low-resolution
frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise
tokens to dynamically relate pixels within and across frames, enhancing coherency.
Additionally, the Channel-wise Texture Aggregation Memory (CaTeGory) infuses
extrinsic knowledge, capitalizing on long-standing semantic textures. Our method
also innovates the blurring diffusion process with the ResShift mechanism, finely
balancing between sharpness and diffusion effects. Comprehensive experiments
confirm our framework’s advantage over state-of-the-art diffusion-based VSR tech-
niques. The code is available: https://github.com/Tang1705/SeeClear-NeurIPS24.

1 Introduction

Video super-resolution (VSR) is a challenging low-level vision task that involves improving the
resolution and visual quality of the given low-resolution (LR) observations and maintaining the
temporal coherence of high-resolution (HR) components. Various deep-learning-based VSR ap-
proaches [1, 2, 30, 18, 15, 21] explore effective inter-frame alignment to reconstruct satisfactory
sequences. Despite establishing one new pole after another in the quantitative results, they struggle to
generate photo-realistic textures.

With the explosion of diffusion model (DM) in visual generation [11, 31, 26], SR from the generative
perspective also garners the broad attention [28, 29, 45, 5]. DM breaks the generation process into
sequential sub-processes and iteratively samples semantic-specific images from Gaussian noise,
equipped with a paired forward diffusion process and reverse denoising process. The former progres-
sively injects varied intensity noise into the image along a Markov chain to simulate diverse image
distributions. The latter leverages a denoising network to generate an image based on the given noise
and conditions. Early efforts directly apply the generation paradigm to super-resolution, overlooking
its characteristic while generating pleasing content, thus trapping in huge sampling overhead.
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Different from generation from scratch, super-resolution resembles partial generation. The structural
information that dominates the early stages of diffusion is contained in the LR priors, while SR tends
to focus on generating high-frequency details [33]. Besides, the loss of high-frequency information in
LR videos stems from the limited sensing range of imaging equipment. As a result, solely disrupting
frames with additive noise is inadequate to depict the degradation of HR videos [10]. Moreover,
prevalent VSR methods employ delicate inter-frame alignment (e.g., optical flow or deformable
convolution) to fuse the sub-pixel information across adjacent frames. However, the disturbed pixels
pose a severe challenge to these methods, rendering the accuracy to deteriorate in the pixel space.
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Figure 1: The sketch of SeeClear. It consists of a Seman-
tic Distiller and a Pixel Condenser, which are responsible
for distilling instance-centric semantics from LR frames
and generating HR frames. The instance-centric and
assembled channel-wise semantics act as thermometer
to control the condition for generation.

To alleviate the above issue, we introduce
SeeClear, an innovative diffusion model em-
powering distilled semantics to enhance the
pixel condensation for video super-resolution.
During the forward diffusion process, the low-
pass filter is applied within the patch, gradually
diminishing the high-frequency component, all
while the residual is progressively shifted in the
frequency domain to transform the HR frames to
corresponding LR versions step by step. To re-
duce the computational overhead, the intermedi-
ate states are decomposed into various frequency
sub-bands via 2D discrete wavelet transform and
subsequently processed by the attention-based
U-Net. Furthermore, we devise a dual semantic-
controlled conditional generation schema to en-
hance the temporal coherence of VSR. Specifi-
cally, a segmentation framework for open vocab-
ulary is employed to distill instance-centric se-
mantics from LR frames. They serve as prompts,
enabling the Instance-Centric Alignment Module (InCAM) to highlight and associate semantically
related pixels within the local temporal scope. Besides, abundant semantic cues in channel dimensions
are also explored to form an extensional memory dubbed Channel-wise Texture Aggregation Memory
(CaTeGory). It aids in global temporal coherence and boosts performance. Experimental results
demonstrate that our method consistently outperforms existing state-of-the-art methods.

In summary, the main contributions of this work are as follows:

• We present SeeClear, a diffusion-based framework for video super-resolution that distills semantic
priors from low-resolution frames for spatial modulation and temporal association, controlling the
condition of pixel generation.

• We reformulate the diffusion process by integrating residual shifting with patch-level blurring, and
introduce an attention-based architecture to explore valuable information among wavelet spectra
during the sampling process, incorporating feature modulation of intra-frame semantics.

• We devise a dual semantic distillation schema that extracts instance-centric semantics of each
frame and further assembles them into texture memory based on the semantic category of channel
dimension, ensuring both short-term and long-term temporal coherence.

2 Related Work

2.1 Video Super-Resolution

Prominent video super-resolution techniques concentrate on leveraging sub-pixel information across
frames to enhance performance. EDVR [37] employs cascading deformable convolution layers
(DCN) for inter-frame alignment in a coarse-to-fine manner, tackling large amplitude video motion.
BasicVSR [1] comprehensively explores each module’s role in VSR and delivers a simple yet effective
framework by reusing previous designs with slight modifications. Given the similarity between DCN
and optical flow, BasicVSR++ [2] devises flow-guided deformable alignment, exploiting the offset
diversity of DCN without instability during the training. VRT [17] combines mutual attention with
self-attention, which is respectively in charge of inter-frame alignment and information preservation.
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RVRT [18] extends this by incorporating optical flow with deformable attention, aligning and fusing
features directly at non-integer locations clip-to-clip. PSRT [30] reassesses prevalent alignment meth-
ods in transformer-based VSR and implements patch alignment to counteract inaccuracies in motion
estimation and compensation. DFVSR [9] represents video with the proposed directional frequency
representation, amalgamating object motion into multiple directional frequencies, augmented with a
frequency-based implicit alignment, thus enhancing alignment.

2.2 Diffusion-based Super-Resolution

Building on the success of diffusion models in the realm of image generation [11, 31, 26, 25, 49],
diffusion-based super-resolution (SR) is advancing. SR3 [28], a pioneering approach, iteratively
samples an HR image from Gaussian noise conditioned on the LR image. In contrast, StableSR [36]
applies diffusion-based SR in a low-dimensional latent space using the pre-trained auto-encoder to
reduce computation and generate improved results through the generative priors contained in weights
of Latent Diffusion. ResDiff [29] combines a lightweight CNN with DM to restore low-frequency
and predict high-frequency components, and ResShift [45] redefines the initial step as a blend of the
low-resolution image and random noise to boost efficiency. Applying a different approach, DiWa [23]
migrates the diffusion process into the wavelet spectrum to effectively hallucinate high-frequency
information. Upscale-A-Video [51], for video super-resolution, introduces temporal layers into the
U-Net and VAE-Decoder and deploys a flow-guided recurrent latent propagation module to ensure
temporal coherence and overall video stability when applying image-wise diffusion model.

2.3 Semantic-Assisted Restoration

Traditionally seen as a preparatory step for subsequent tasks [52, 14, 50, 46, 6, 13], restoration
is now reformulated with the assistance of semantics. SFT [38] utilizes semantic segmentation
probability maps for spatial modulation of intermediate features in the SR network, yielding more
realistic textures. SKF [40] supports low-light image enhancement model to learn diverse priors
encapsulated in a semantic segmentation model by semantic-aware embedding module paired with
semantic-guided losses. SeD [16] integrates semantics into the discriminator of GAN-based SR for
fine-grained texture generation rather than solely learning coarse-grained distribution. CoSeR [32]
bridges image appearance and language understanding to empower SR with global cognition buried
in LR image, regarding priors of text-to-image (T2I) diffusion model and a high-resolution reference
image as powerful conditions. SeeSR [39] analyzes several types of semantic prompts and opts tag-
style semantics to harness the generative potential of the T2I model for real SR. Semantic Lens [34]
forgoes pixel-level inter-frame alignment and distills diverse semantics for temporal association in
the instance-centric semantic space, attaining better performance.

3 Methodology

Given a low-resolution (LR) video sequence of N frames ILR
i ∈ RN×C×H×W , where i is the frame

index, H ×W represents spatial dimensions, and C stands for the channel of frame, SeeClear aims to
exploit rich semantic priors to generate the high-resolution (HR) video IHR

i ∈ RN×C×sH×sW , with
s as the upscaling factor. In the iterative paradigm of the diffusion model, HR frames are corrupted
according to handcrafted transition distribution at each diffusion step (t = 1, 2, · · · , T ). And a
U-shaped network is employed to estimate the posterior distribution using LR frames as condition
during reverse generation. As illustrated in Figure 1, it consists of a Semantic Distiller and a Pixel
Condenser, respectively responsible for semantic extraction and texture generation.

The LR video is initially split into non-overlapping clips composed of m frames for parallel processing.
Semantic Distiller, a pre-trained network for open-vocabulary segmentation, distills semantics related
to both instances and background clip by clip, denoted as instance-centric semantics. Pixel Condenser
is an attention-based encoder-decoder architecture, in which the encoder extracts multi-scale features
under the control of LR frames, and the decoder generates HR frames from coarse to fine. They are
also bridged via skip connections to transmit high-frequency information at the same resolution. To
maximize the network’s generative capacity, instance-centric semantics are utilized as conditions for
individual frame generation in the decoder. They also serve as the cues of inter-frame alignment for
temporal coherence within the video clip and further cluster into a semantic-texture memory along
channel dimension for consistency across clips.
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3.1 Blurring ResShift

During the video capturing, frequencies exceeding the imaging range of the device are truncated,
leading to the loss of high-frequency information in LR videos. Therefore, an intuition is to construct
a Markov chain between HR frames and LR frames in the frequency domain. Inspired by blurring
diffusion [12], the forward diffusion process of SeeClear initializes with the approximate distribution
of HR frames. It then iterates and terminates with the approximate distribution of LR frames using a
Gaussian kernel convolution in frequency space facilitated by the Discrete Cosine Transformation
(DCT). Considering the correlation of neighboring information, blurring is conducted within a local
patch instead of the whole image. The above process is formulated as:

q (ut | u0) = N (ut | Dtu0, ηtE) , t ∈ {1, · · · , T} , (1)

u0 = V TIHR
i , (2)

where u0 and ut denote HR frames and intermediate states in the frequency space for brevity.
V T denotes the projection matrix of DCT. Dt = eΛt is diagonal blurring matrix with Λx×p+y =

−π2(x
2

p2 + y2

p2 ) for coordinate (x, y) within patch of size p× p, and ηt is the variance of noise. E is
the identity matrix.

In the realm of generation, the vanilla destruction process progressively transforms the image into
pure Gaussian noise, leading to numerous sampling steps and tending to be suboptimal for VSR.
An alternative way is to employ a transition kernel that shifts residuals between HR and LR frames,
accompanied by patch-level blurring. The forward diffusion process is formulated as:

q (ut | u0,ul) = N
(
ut | Dtu0 + ηtet, κ

2ηtE
)
, t ∈ {1, · · · , T} , (3)

et = ul −Dtu0, (4)

where ul denotes LR frames transformed into the frequency space. et indicates the residuals between
LR and blurred HR frames at time step t. ηt represents the shifting sequence and κ is a hyper-
parameter determining the intensity of noise. Upon this, SeeClear can yield HR frames by estimating
the posterior distribution p(u0|ul) in the reverse sampling progress, formulated as:

p (u0 | ul) =

∫
p (uT | ul)

T∏
t=1

pθ (ut−1 | ut,ul) du1:T , (5)

p (uT | ul) ≈ N
(
uT | ul, κ

2E
)
, (6)

where pθ (ut−1 | ut,ul) represents the inverse transition kernel restoring ut to ut−1. θ denotes
learnable parameters of attention-based U-Net.

To alleviate the computational overhead, preceding methods introduce an autoencoder to transform
pixel-level images in the perceptually equivalent space, concentrating on the semantic composition and
bypassing the impedance of high-frequency details. However, the loss of high-frequency information
during encoding is hard to recover in the decoding and will deteriorate the visual quality. Therefore,
we forgo the autoencoding method in SeeClear and incorporate discrete wavelet transform (DWT)
in the diffusion process. Specifically, the HR and LR frames are recursively decomposed into four
sub-bands:

IHR
ll , IHR

lh , IHR
hl , IHR

hh = DWT2D

(
IHR
i

)
, (7)

where IHR
ll denotes the low-frequency approximation, IHR

lh , IHR
hl and IHR

hh correspond to horizontal,
vertical and diagonal high-frequency details. DWT2D (·) represents the 2D Discrete Wavelet Trans-
form (DWT). After k decompositions, each of them possesses a size of H

2k
× W

2k
. These coefficients

are contacted along the channel dimension and serve in the diffusion process. The rationale behind
employing DWT as a substitute is two-fold. Firstly, it enables the U-Net to perform on a small
spatial size without information loss. Secondly, it benefits from the U-Net scaling [44] hindered
by additional parameters of the autoencoding network. To make full use of DWT, window-based
self-attention followed by channel-wise self-attention is stacked as the basic unit of U-Net, in charge
of the correlation of intra-sub-bands and inter-sub-bands, respectively.
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Figure 2: The illustration of Instance-Centric Alignment Module (InCAM). It utilizes the segmenta-
tion features to bridge the pixel-level information and instance-centric semantic tokens. And then,
the semantic-aware features can be aligned in the semantic space based on their semantic relevance.

3.2 Instance-Centric Alignment within Video Clips

Due to the destruction of the diffusion process, pixel-level inter-frame alignment, such as optical
flow, is no longer applicable. With the premise of semantic embedding, we devise the Instance-
Centric Alignment Module (InCAM) within video clips, as illustrated in Figure 2. It establishes
temporal association in the semantic space instead of intensity similarity among frames, avoiding the
interference of noise and blurriness. Specifically, Semantic Distiller predicts a set of image features
Fimg and text embedding Ftxt from LR frames and predefined vocabulary V . After that, the k image
features with the highest similarity to the text embedding are retained, including token-level semantic
priors and pixel-level segmentation features from LR frames. The above procedure is formulated as:

Fimg, Ftxt = S
(
ILR
i ,V

)
, (8)

Oi, Pi = topk (Sim (Fimg, Ftxt)) , (9)

where S (·) represents Semantic Distiller. topk (·) and Sim (·) denote the operations of selecting
the k largest items and calculating the similarity respectively. Oi and Pi are semantic tokens and
segmentation features, in which the former represents high-level semantics and can locate related
pixels in the segmentation features. The segmentation features contain both semantics and low-
level structural information, which is suitable for bridging the semantics and features of the Pixel
Condenser. It is utilized to generate spatial modulation pairs prepared for semantic embedding,
formulated as:

(γ, β) = G (Pi) , (10)

Fi = (fi ⊙ γ + β) + fi, (11)

where γ and β represent scale and bias for modulation. fi and Fi correspond to original and modulated
features. G denotes two convolutional layers followed by a ReLU activation. “⊙” represents the
Hadamard product. After that, InCAM embeds semantics into modulated features based on multi-head
cross-attention, yielding semantic-embedded features F̂i:

Qi = FiW
Q, Ki = OiW

K , Vi = OiW
V , (12)

F̂i = SoftMax
(
QiK

T
i /

√
d
)
Vi, (13)

where Qi, Ki and Vi denote matrices derived from modulated features and semantic tokens.
WQ, WK and WV represent the linear projections, and d is the dimension of projected matri-
ces. SoftMax (·) denotes the SoftMax operation. To benefit from the adjacent supporting frames,
it is necessary to establish semantic associations among frames. The frame-wise semantic tokens
are further fed into the instance encoder-decoder for communicating semantics along the temporal
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dimension, generating clip-wise semantic tokens. It gathers all the information of the same semantic
object within a clip and serves as the guide for inter-frame alignment. Specifically, InCAM combines
semantic guidance and enhanced features to activate the related pixels across frames and utilizes
multi-frame self-attention for parallel alignment and fusion. The above procedure is formulated as:

Oc = Dec
(
Enc (Oi) , Ô

)
, (14)

F̄i = MFSA
(
Oc · F̂i

)
, (15)

where Oc and Ô respectively denote clip-wise semantic and randomly initialized tokens. Enc (·) and
Dec (·) represent instance encoder and decoder. MFSA (·) denotes the multi-frame self-attention [30],
the extended version of self-attention in video. F̄i is aligned feature. The product of semantics and
enhanced features is akin to the class activation mapping, which highlights the most similar pixels in
the instance-centric semantic space among frames.

3.3 Channel-wise Aggregation across Video Clips
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Figure 3: The illustration of Channel-wise
Texture Aggregation Memory (CaTeGory). It
assembles the textures based on the semantic
class along the channel dimension.

Due to the limited size of the temporal window, the per-
formance of clip-wise mutual information enhancement
in long video sequences is unsatisfactory, which could
lead to inconsistent content. To stabilize video content
and enhance visual texture, the Channel-wise Texture
Aggregation Memory (CaTeGory) is constructed to cluster
abundant textures according to channel-wise semantics,
as graphically depicted in Figure 3. It is comprised of
the channel-wise semantic and the corresponding texture.
Specifically, channels of instance-centric semantics also
contain distinguishing traits, which are assembled and
divided into different groups to form the channel-wise
semantic. Concurrently, hierarchical features from the
decoder of the Pixel Condenser are clustered into the cor-
responding semantic group to portray the textures. The
connection between them is established in a manner sim-
ilar to the position embedding in the attention mechanism.
The above process can be formulated as:

(Cj , Tj) = M
(
C̄j , T̄j ,

{
F̄i,k

}4

k=1

)
, (16)

where F̄i,k is the features benefited from adjacent frames of k-th layer. C̄j and T̄j respectively denote
channel-wise semantics and textures of j-th group, which are zero-initialized as network parameters.
They are iteratively updated towards the final version (i.e., Cj and Tj) by injecting external knowledge
from the whole dataset and previous clips. And M (·) represents the construction of CaTeGory. It
concatenates the multi-scale features and incorporates them into channel-wise semantics and textures:

T̂j = C̄j × T̄j , (17)

Tj = SA
(
CA

(
T̂j ,

{
F̄i,k

}4

k=1

))
, (18)

where T̂j is the textures embedded channel-wise semantics. SA (·) and CA(·) indicate multi-head
self-attention and cross-attention. The layer normalization and feed-forward network are omitted for
brevity. It bridges the channel-wise semantics and textures via matrix multiplication and further fuses
high-value information from the pyramid feature, delivering augmented semantic-texture pairs. The
hierarchical features not only provide rich structural information but also carry relatively abstract
amid features in order to benefit different decoder layers more effectively. At each layer, the prior
knowledge stored in CaTeGory is firstly queried by the clip-wise semantics along channel dimension
and aggregated for feature enhancement of the current clip, which is formulated as:

Aj = SoftMax
(
OT

c Cj

)
, (19)

F̃i = CA
(
F̄i,AjTj

)
+ F̄i, (20)
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where Aj depicts the similarity between the clip-wise semantics and items of CaTeGory along
channel dimensions, and F̃i is the refined features as input of the next layer. As mentioned before,
semantic-texture pairs are optimized as parts of the network during the training stage, absorbing ample
priors from the whole dataset. In the sampling process, the update mechanism is reused to integrate
the long-term information of video into memory to improve the super-resolution of subsequent clips.

4 Experiments

4.1 Experimental Setup

Datasets To assess the effectiveness of the proposed SeeClear, we employ two commonly used
datasets for training: REDS [24] and Vimeo-90K [41]. The REDS dataset, characterized by its
realistic and dynamic scenes, consists of three subsets used for training and testing. In accordance
with the conventions established in previous works [1, 2], we select four clips2 from the training
dataset to serve as a validation dataset, referred to as REDS4. The Vid4 [20] dataset is used as
the corresponding test dataset for Vimeo-90K. The LR sequences are degraded through bicubic
downsampling (BI), with a downsampling factor of 4×.

Implementation Details The pre-trained OpenSeeD [47] is opted as the semantic distiller with frozen
weights, while all learnable parameters are contained in the pixel condenser. And the schedulers of
blur and noise in the diffusion process follow the settings of IHDM [25] and ResShift [45]. During
the training, the pixel condenser is first trained to generate an HR clip with 5 frames under the control
of instance-centric semantics. And then, Channel-wise Texture Memory is independently trained
to inject valuable textures from the whole dataset and be capable of fusing long-term information.
Finally, the whole network is jointly fine-tuned. All training stages utilize the Adam optimizer with
β1 = 0.5 and β2 = 0.999, where the learning rate decays with the cosine annealing scheme. The
Charbonnier loss [4] is applied on the whole frames between the ground truth and the reconstructed
frame, formulated as L =

√
||IHR

i − ISR
i ||2 + ϵ2. The SeeClear framework is implemented with

PyTorch-2.0 and trained across 4 NVIDIA 4090 GPUs, each accommodating 4 video clips.

Evaluation Metrics Comparative analysis is conducted among different VSR methods, with the
evaluation being anchored on both pixel-based and perception-oriented metrics. Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are utilized to evaluate the quantitative
performance as pixel-based metrics. All of them are calculated based on the Y-channel, with the
exception of the REDS4, for which the RGB-channel is used. On the perceptual side, Learned
Perceptual Image Patch Similarity (LPIPS) [48] is elected for assessment from the perspective of
human visual preference. It leverages a VGG model to extract features from the generated HR video
and the ground truth, subsequently measuring the extent of similarity between these features.

4.2 Comparisons with State-of-the-Art Methods

We compare SeeClear with several state-of-the-art methods, including regression-based and diffusion-
based ones. As shown in Table 3, SeeClear achieves superior perceptual quality compared to
regression-based methods despite slightly underperforming in pixel-based metrics. We also provide
an extended version, which leverages the generative capability of SeeClear to enhance the features
of the regression-based model, akin to references such as [7, 3]. An observable increase in fidelity
is accompanied by a notable further improvement in the perceptual metrics of the reconstructed
results. Similar performance trends can be noted on Vid4 as those on REDS4. In particular, SeeClear
achieves an LPIPS score of 0.1548, marking a relative improvement of 10.8% compared to the top
competitor, SATeCo [7]. When pitted against a variant of SATeCo, which is not modulated by LR
videos, SeeClear demonstrates a higher PSNR value with a comparable LPIPS score. It suggests that
SeeClear benefits from the control of dual semantics, striking a balance between superior fidelity and
the generation of realistic textures.

As visualized in Figure 4, SeeClear showcases its ability to restore textures with high fidelity more
effectively compared with other methods. Despite large blurriness, SeeClear still demonstrates
robust restoration capabilities for video super-resolution, reinforcing the efficacy of utilizing instance-
specific and channel-wise semantic priors for video generation control. To further substantiate

2Clip 000, 011, 015, 020
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Table 1: Performance comparisons in terms of pixel-based (PSNR and SSIM) and perception-oriented
(LPIPS) evaluation metrics on the REDS4 [24] and Vid4 [20] datasets. The extended version of
SeeClear is marked with ⋆. Red indicates the best, and blue indicates the runner-up performance
(best view in color) in each group of experiments.

Methods Frames REDS4 [24] Vid4 [20]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic - 26.14 0.7292 0.3519 23.78 0.6347 0.3947
TOFlow [41] 7 29.98 0.7990 0.3104 25.89 0.7651 0.3386
EDVR-M [37] 5 30.53 0.8699 0.2312 27.10 0.8186 0.2898
BasicVSR [1] 15 31.42 0.8909 0.2023 27.24 0.8251 0.2811
VRT [17] 6 31.60 0.8888 0.2077 27.93 0.8425 0.2723
IconVSR [1] 15 31.67 0.8948 0.1939 27.39 0.8279 0.2739
StableSR [36] 1 24.79 0.6897 0.2412 22.18 0.5904 0.3670
ResShift [45] 1 27.76 0.8013 0.2346 24.75 0.7040 0.3166
SATeCo [7] 6 31.62 0.8932 0.1735 27.44 0.8420 0.2291
SeeClear (Ours) 5 28.92 0.8279 0.1843 25.63 0.7605 0.2573
SeeClear⋆ (Ours) 5 31.32 0.8856 0.1548 27.80 0.8404 0.2054

Clip 011, REDS4

Bicubic

VRT [17]

EDVR [37]

SeeClear⋆ (Ours)

BasicVSR [1]

HR

Clip Calendar, Vid4

Bicubic

VRT [17]

EDVR [37]

SeeClear⋆ (Ours)

BasicVSR [1]

HR

Figure 4: Qualitative results on the REDS4 and Vid4 datasets. SeeClear generates clearer content and
sharper textures.

the temporal coherence acquired by SeeClear, we also visualize two consecutive frames from the
generated HR videos, constructed using different diffusion-based VSR methodologies, as depicted
in Figure 5. ResShift synthesizes varied visual contents across two frames, such as the fluctuating
figures on the license plate. Contrarily, HR frames generated via SeeClear maintain a higher temporal
consistency and deliver pleasing textures.

4.3 Ablation Study

To assess the contribution of each component within the proposed SeeClear, we begin with a baseline
model and gradually integrate these modules. Specifically, all semantic-related operations are
bypassed, retaining solely spatial and channel self-attention and residual blocks, degenerating into a
diffusion-based image SR model without any condition. Subsequently, we incrementally introduce
the crafted semantic-conditional module into the baseline and formulate several variants. Their results
are listed in Table 2 and partially visualized in Figure 6.
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Table 2: Performance comparisons on REDS4 among variants with different semantic-condition
control by integrating InCAM and CaTeGory.

Baseline DWT Semantic MFSA InCAM CaTeGory PSNR ↑ SSIM ↑ LPIPS ↓
1 ✓ ✓ 28.05 0.7993 0.2120
2 ✓ ✓ ✓ 28.08 0.7998 0.2088
3 ✓ ✓ ✓ ✓ 27.99 0.7961 0.2053
4 ✓ ✓ ✓ ✓ ✓ 28.46 0.8098 0.1917
5 ✓ ✓ ✓ ✓ 28.21 0.7986 0.2149
6 ✓ ✓ ✓ ✓ ✓ 28.74 0.8267 0.1938
7 ✓ ✓ ✓ ✓ ✓ ✓ 28.92 0.8279 0.1843

Frame 76, Clip 010, REDS4 Frame 77, Clip 010, REDS4 (a) (b) (c) (d)

Figure 5: Qualitative comparison of regions between consecutive frames. (a) and (b) are patches
produced by ResShift [45], derived from Frames 76 and 77 respectively. (c) and (d) display the
corresponding regions as generated through SeeClear.

Clip 020, REDS4

Model #1

Model #6

Model #4

HR

Figure 6: Visual comparisons of ablation for investigat-
ing the contribution of key modules.

First, the intra-frame semantic condition brings
about 1.5% improvements in LPIPS. Albeit the
multi-frame self-attention further improves the
perceptual quality, it also impairs the fidelity of
the restored video. Under the control of InCAM,
SeeClear can correlate semantically consistent
pixels in adjacent frames by combining intra-
frame and inter-frame semantic priors, elevating
the PSNR from 27.99 dB to 28.46 dB, and bring-
ing about 6.6% improvements in LPIPS. Further-
more, upon integrating the semantic priors from
CaTeGory, the fully-fledged SeeClear notably
enhances both the pixel-based and perception-
oriented metrics simultaneously. It indicates that the cooperative control of semantics is more
beneficial for generating videos of higher fidelity and better perceptual quality. As illustrated in
Figure 6, the baseline struggles to restore tiny and fine patterns without semantic condition, and it
gradually gains improvement accompanied by the strengthening of semantic control.

5 Conclusion

In this work, we present a novel diffusion-based video super-resolution framework named SeeClear.
It formulates the diffusion process by incorporating residual shifting mechanism and patch-level
blurring, constructing a Markov chain initiated with high-resolution frames and terminated at low-
resolution frames. It employs a semantic distiller and a pixel condenser for super-resolution during the
inverse sampling process. The instance-centric semantics distilled by the semantic distiller prompts
spatial modulation and temporal association in the devised Instance-Centric Alignment Module.
They are further assembled into Channel-wise Texture Aggregation Memory, providing abundant
conditions for temporal coherence and realistic content.
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A Mathematical Details

Patch-level Blurring Diffusion. Blurring Diffusion [12] designs the destruction process based on
heat dissipation [25] that retains low-frequency components of images over high frequencies. It
describes the thermodynamic process in which the temperature u(x, y, t) changes at position (x, y)
in a 2D plane with respect to the time t via a partial differential equation:

∂

∂t
u (x, y, t) = ∆u (x, y, t) , t ∈ {1, · · · , T} , (21)

where ∆ = ∇2 denotes the Laplace operator. Based on Neumann boundary conditions (∂u/∂x =
∂u/∂y = 0) with zero-derivatives at the boundaries of the image, the solution is given by a diagonal
matrix in the frequency domain of the discrete cosine transform:

ut = eΛtu0, t ∈ {1, · · · , T} , (22)

where u0 is the initial state and Λ is a diagonal matrix with negative squared frequencies on the
diagonal. It is equivalent to a convolution with a Gaussian kernel with variance σ2

blur = 2t in the
realm of image processing. Blurring Diffusion further mixes Gaussian noise with variance σ2

t into
the blurring process to incorporate stochasticity into deterministic dissipation.

Patch-level blurring diffusion conducts the blurring process within a patch with the size of p× p to
make all pixel intensity the same instead of the whole image, which means Λx×p+y = −π2(x

2

p2 +
y2

p2 ).
More generally, it can be extended with any invertible transformation, corresponding to the marginal
distribution in the pixel space:

q
(
Iti | IHR

i

)
= N

(
Iti | R diag (αt)R

−1IHR
i ,R diag (βt)R

−1
)
, t ∈ {1, · · · , T} , (23)

where R and R−1 represent invertible transformation and corresponding inverse transformation.
diag (·) denotes the operation that projects a vector to a diagonal matrix. αt and βt are specific
schedules for mean and noise.

Blurring ResShift. ResShift [45] introduces a monotonically increasing sequence {ηt}Tt=1 to
gradually shift residual between low-resolution image and high-resolution one, whose marginal
distribution is defined as:

q
(
Iti | I0i , ILR

i

)
= N

(
Iti | I0i + ηte0, κ

2ηtE
)
, t ∈ {1, · · · , T} , (24)

where e0 is the residuals between low-resolution and high-resolution frames. ηt controls the speed
of residual shifting and satisfies η1 → 0 and ηT → 1. After incorporation of patch-level blurring
diffusion and ResShift, ut can be sampled via

ut = eΛtu0 + ηtet + κ
√
ηtϵt ⇔ ut = (1− ηt) e

Λtu0 + ηtul + κ
√
ηtϵt, (25)

et = ul −Dtu0 ⇔ et = ul − eΛtu0, (26)

where ϵt ∼ N (u | 0,E). Thus, the relation between ut and ut−1 can be obtained:

û0 =
ut−1 − ηt−1ul

(1− ηt−1)eΛ(t−1)
, (27)

ut =
1− ηt

1− ηt−1
eΛ (ut−1 − ηt−1ul) + ηtul + κ

√
αtϵt, (28)

where αt = ηt−ηt−1. û0 is approximate HR frame. By recursively applying the sampling procedure
and reparameterization trick, we can rewrite the marginal distribution of Blurring ResShift as follows:

q (ut | u0,ul) = N
(
ut | Dtu0 + ηtet, κ

2ηtE
)
, t ∈ {1, · · · , T} , (29)

According to Bayes’s theorem, there is

q (ut−1 | ut,u0,ul) ∝ q (ut | ut−1,ul) q (ut−1 | u0,ul) , (30)

where

q (ut | ut−1,ul) = N
(
ut |

1− ηt
1− ηt−1

eΛ (ut−1 − ηt−1ul) + ηtul, κ
2αtE

)
, (31)

q (ut−1 | u0,ul) = N
(
ut−1 | (1− ηt−1) e

Λ(t−1)u0 + ηt−1ul, κ
2ηt−1E

)
, (32)
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Comparative Power Spectral Density (PSD) analysis

HR

LR

IHDM

Patch-Level Blurring

ResShift

SeeClear

Figure 4: Visual comparison of intermediate state at time step t via different diffusion processes.

And then, it only needs to focus on the quadratic term in the exponent of q (ut−1 | ut,u0,ul):

−

(
ut − 1−ηt

1−ηt−1
eΛ (ut−1 − ηt−1ul)− ηtul

)(
ut − 1−ηt

1−ηt−1
eΛ (ut−1 − ηt−1ul)− ηtul

)T

2κ2αt

−
(
ut−1 − (1− ηt−1) e

Λ(t−1)u0 − ηt−1ul

) (
ut−1 − (1− ηt−1) e

Λ(t−1)u0 − ηt−1ul

)T
2κ2ηt−1

=− 1

2

 (1−ηt)
2

(1−ηt−1)
2 e2Λ

κ2αt
+

1

κ2ηt−1

ut−1u
T
t−1 +

 1− ηt
1− ηt−1

eΛ
ut +

(
ηt−1

1−ηt

1−ηt−1
eΛ − ηt

)
ul

κ2αt

+
(1− ηt−1) e

Λ(t−1)u0 − ηt−1ul

κ2ηt−1

]
uT
t−1 + const

=− (ut−1 − µ) (ut−1 − µ)
T

2σ2
+ const,

(33)

where

µ =
ληt−1ut + αt (1− ηt−1) e

Λ(t−1)u0 +
(
λ2η2t−1 − ληt−1ηt − αtηt−1

)
ul

λ2ηt−1 + αt
(34)

σ2 =
κ2αtηt−1

λ2ηt−1 + αt
, (35)

λ =
1− ηt

1− ηt−1
eΛ, (36)

‘const’ denotes the item that is independent of ut−1.

B Rational Explanation

We analyze the final states of different diffusion processes via the power spectral density, which
reflects the distribution of frequency content in an image, as illustrated in Figure 4. It can be observed
that IHDM performs blurring globally and has a significant difference in frequency distribution
compared to the LR image, while the patch-level blurring is closer to the frequency distribution of
the LR. On this basis, SeeClear further introduces residual and noise. Compared to ResShift without
blurring, the diffusion process adopted by SeeClear makes the image more consistent with the LR in
the low-frequency components and introduces more randomness in the high-frequency components,
compelling the model to focus on the generation of high-frequency components.
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Figure 8: The illustration of SeeClear. It comprises the diffusion process incorporating patch-level
blurring and residual shift mechanism and a reverse process. During the reverse process, Semantic
Distiller for semantic embedding extraction and U-shaped Pixel Condenser are employed for iterative
denoising. The devised InCAM and CaTeGory are inserted into the U-Net to utilize the diverse
semantics for inter-frame alignment in the diffusion-based VSR framework.

SeeClear consists of a forward diffusion process and a reverse process for VSR. In the diffusion
process, patch-level blurring and residual shift mechanism are integrated to degrade HR frames
based on the handcrafted time schedule. During the reverse process, a transformer-based network
for open vocabulary segmentation and a U-Net are employed for iterative denoising. The former is
responsible for extracting semantic embeddings related to instances from LR videos, similar to the
process of distillation in physics, and is therefore named the semantic distiller. The latter is utilized
to filter out interfering noise and retain valuable information from low-quality frames, similar to the
condensation process. All of them are tailored for image processing, and SeeClear takes diverse
semantic embeddings as conditions to enable the network to be aware of the generated content and
determine the aligned pixels from adjacent frames for the temporal consistency of the whole video.

As depicted in Figure 8, the attention-based Pixel Condenser primarily consists of three parts,
i.e., encoder, decoder, and middle block. As the input of the encoder, low-resolution frames are
concatenated with the intermediate states and processed through a convolution layer. The encoder
incorporates a window-based self-attention and channel-wise self-attention, alternating between two
residual blocks. These attention operations mine valuable information within and across the wavelet
sub-bands, and the residual blocks infuse the features with the intensity of degradation. Following
this, a wavelet-based downsample layer is deployed for feature downsampling.

Specifically, the features are decomposed into various sub-bands via a 2D discrete wavelet transform,
reducing the spatial dimensions while keeping the original data intact. Low-frequency features are
further fed into the subsequent layer of the encoder, while others are transmitted to the corresponding
wavelet-based upsample layer in the decoder via a skip connection. Additionally, the wavelet-based
downsample layers are utilized parallel along the encoder, refilling the downsampled features with
information derived from the low-resolution frames.

The devised Instance-Centric Alignment Module (InCAM) and Channel-wise Texture Aggregation
Memory (CaTeGory) are inserted into both the middle and decoder. Firstly, the InCAM spatially
modulates the features based on instance-centric semantics and aligns adjacent frames within the
clip in semantic space. Spatial self-attention employs these aligned features, substituting the original
features as input. Subsequently, features enhanced through channel-wise self-attention are embedded
as queries to seek assistance from the CaTeGory. Furthermore, the wavelet-based upsample layer
accepts features from the decoder and high-frequency information transmitted from the encoder. It
reinfuses the lost information from the encoder while scaling the feature size. The network concludes
with a convolution layer refining the features, which are added to the interpolated frames to generate
the final output.
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Table 3: Performance comparisons in terms of Full-Reference IQA (DISTS [8]) and No-Reference
IQA (NIQE [22] and CLIP-IQA [35]) evaluation metrics on the REDS4 [24] and Vid4 [20] datasets.
The extended version of SeeClear is marked with ⋆. Red indicates the best, and blue indicates the
runner-up performance (best view in color) in each group of experiments.

Methods Frames REDS4 [24] Vid4 [20]
DISTS ↓ NIQE ↓ CLIP-IQA ↑ DISTS ↓ NIQE ↓ CLIP-IQA ↑

Bicubic - 0.1876 7.257 0.6045 0.2201 7.536 0.6817
TOFlow [41] 7 0.1468 6.260 0.6176 0.1776 7.229 0.7356
EDVR-M [37] 5 0.0943 4.544 0.6382 0.1468 5.528 0.7380
BasicVSR [1] 15 0.0808 4.197 0.6353 0.1442 5.340 0.7410
VRT [17] 6 0.0823 4.252 0.6379 0.1372 5.242 0.7434
IconVSR [1] 15 0.0762 4.117 0.6162 0.1406 5.392 0.7411
StableSR [36] 1 0.0755 4.116 0.6579 0.1385 5.237 0.7644
ResShift [45] 1 0.1432 6.391 0.6711 0.1716 6.868 0.7157
SATeCo [7] 6 0.0607 4.104 0.6622 0.1015 5.212 0.7451
SeeClear (Ours) 5 0.0762 4.381 0.6870 0.0947 5.305 0.7106
SeeClear⋆ (Ours) 5 0.0641 3.757 0.6848 0.0919 4.896 0.7303

Frames Bicubic EDVR [37] BasicVSR [1] VRT [17] SeeClear HR

Figure 9: Visual examples of video super-resolution results by different approaches on the REDS4
and Vid4 datasets. The region in the red box is presented in the zoom-in view for comparison.

D Additional Experiments

We provide additional evaluation metrics and visual comparisons contrasting the existing VSR
methods with our proposed SeeClear. As demonstrated in Figure 9, our proposed method successfully
generates pleasing images without priors pre-trained on large-scale image datasets, showcasing
sharp edges and clear details, evident in vertical bar patterns of windows and characters on license
plates. Conversely, prevalent methods seemingly struggle, causing texture distortion or detail loss in
analogous scenes.

We also execute several experiments focused on the degradation scheme of the diffusion process,
verifying the performance of the models on the first frame, as indicated in Table 4. Compared to the
straightforward diffusion process of simply adding Gaussian noise into HR frames, the combination
of blurring diffusion proves beneficial in generating the high-frequency details discarded in LR
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Table 4: Performance comparisons on the first frame of REDS4 among variants with different
deterioration during the diffusion process and U-Net.

Noise σ2
B Model PSNR ↑ SSIM ↑ LPIPS ↓

1 ResShift 0 WaveDiff 26.78 0.7960 0.2096
2 ResShift 2 WaveDiff 26.45 0.7927 0.2008
3 ResShift 3 WaveDiff 27.74 0.8047 0.2067
4 ResShift 0 SwinUNet 27.76 0.8013 0.2346
5 ResShift 2 SeeClear 28.04 0.8134 0.1971

frames. Specifically, the variation in the intensity of blur (Line 1-3) affects the fidelity and perceptual
quality. Among them, there is no blurring when σ2

B = 0, and the greater the value of σ2
B , the greater

the blurring intensity. It can be observed there is a 0.96 dB improvement in PSNR and the value of
LPIPS ranges from 0.2096 to 0.2067 with the increasement of σ2

B .

On another note, implementing attention mechanisms in the wavelet spectrum proves more successful
in uncovering valuable insights than in the pixel domain. Additionally, SeeClear introduces the
alternation of spatial self-attention and channel self-attention, refining the modeling of intra and
inter-frequency sub-band correlations and remarkably enhancing the quality of the generated high-
resolution frames.

E Complexity Analysis

Table 5: Complexity comparisons between different
diffusion-based super-resolution methods.

Methods Params Time Infer
Steps Time (s)

SISR

LDM [26] 169.0 M 200 5.21
DiffBIR [19] 1716.7M 50 5.85
ResShift [45] 173.9M 15 1.12
StableSR [36] 1409.1M 200 18.70
CoSeR [32] 2655.52M 200 -
SeeSR [39] 2283.7M 50 7.24
PASD [42] 1900.4M 20 6.07

VSR
StableVSR [27] 712M 50 28.57
MGLD-VSR [43] 1.5B 50 1.113
SeeClear (Ours) 229.23M 15 1.142

Table 5 compares the efficiency between our
proposed method and diffusion-based meth-
ods. It presents the number of parame-
ters of different models and their inference
time for super-resolving 512 × 512 frames
from 128 × 128 inputs. Combining these
comparative results, we draw the follow-
ing conclusions: i) Compared to semantic-
assisted single-image super-resolution (e.g.,
CoSeR [32] and SeeSR [39]), our proposed
method possesses fewer parameters and higher
inference efficiency. ii) In contrast to existing
diffusion-based methodologies for VSR [27,
43], SeeClear is much smaller and runs faster,
benefiting from the reasonable module de-
signs and diffusion process combing patch-
level blurring and residual shift mechanism.

F Generation Process

A video clip consisting of five frames is parallelly sampled during the inference process. These LR
frames are first fed into the semantic distiller to extract semantic tokens and then corrupted by random
noise as the input of the pixel condenser. The pixel condenser iteratively generates the corresponding
HR counterparts from noisy LR frames under the condition of LR frames and semantic priors. The
pseudo-code of the inference is depicted in the Algorithm 1.

G Limitations and Societal Impacts

Limited by the size and diversity of the dataset, SeeClear, being solely trained on video super-
resolution datasets, does not fully leverage the generative capabilities of diffusion models as efficiently
as those that benefit from pre-training on large-scale image datasets such as ImageNet. While SeeClear
is capable of generating sharp textures and maintaining consistent details, it falls short in restoring
tiny objects or intricate structures with complete satisfaction.
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Algorithm 1: Generation Process of SleeCear

Input: LR frames ILR
n ∈ RN×C×H×W ; time steps T ; and predefined schedule {α, η}

Output: SR frames ISR
n ∈ RN×C×sH×sW

1 ĪLR
n = VRT(ILR

n )

2 uT
n = DWT2D(Ī

LR
n ) + ϵ, ϵ ∼ N (0, I)

3 —————————— Parallel Generation within Local Video Clip ——————————
4 for m = 1 to N

M do // M refers to the number of frames in a video clip
5 for t = T − 1 to 0 do
6 if t=T-1 then
7 On, Pn = S(ILR

n ,V)
8 ut

n = uT
n

9 else
10 ut

n = DWT2D(Ī
t+1
n )

11 skipH = [ ] // Array of high-frequency spectrums for skip connection
12 for i = 1 to 4 do // i refers to ith layer of encoder E
13 if i=1 then
14 f i−1

n = [Itn, u
t
n]

15 else
16 f i−1

n = [WD(ILR
n ), f̄ i−1

n ] // WD denotes Wavelet-based DownSample

17 f̂ i
n = Ei(f i−1

n )
18 if i ̸= 4 then
19 Li

n, H
i
n = WD(f̂ i

n)

20 f̄ i
n = Li

n

21 skipH = skipH +Hi
n

22 else
23 f̄ i

n = f̂ i
n

24 Om = Dec(Enc(On), Ô)

25 for j = 1 to 3 do // j refers to jth layer of middle blocks B
26 γj

n, β
j
n = G(Pn)

27 f j
n = (f̄ j−1

n

⊙
γj
n + βj

n) + f̄ j−1
n

28 f̂ j
n = CA(f j

n, Om, Om)

29 f̄ j
n = Bj(MFSA(Oc · f̂ j

n))

30 feats = [ ] // Array of multi-scale features for CaTeGory
31 for k = 1 to 4 do // k refers to kth layer of decoder D
32 if k̸=4 then
33 fk

n = WU([f̄k−1
n , skipH [−k]]) // WU denotes Wavelet-based UpSample

34 γk
n, β

k
n = G(Pn)

35 f̂k
n = (fk−1

n

⊙
γk
n + βk

n) + f̄k−1
n

36 f̃k
n = CA(f̂k

n , Oc, Oc)

37 f̈k
n = Dk(MFSA(Oc · f̃k

n))

38 f̄k
n = CA(f̈k

n , Cm, Tm)

39 feats = feats+ f̄k
n

40 Itn = IDWT2D(f̄n) + ĪLR
n

41 Ītn = αtµ(I
t
n, Ī

t+1
n ) + ηtϵ

42 ———————— Update CaTeGory for Global Video Consistency ————————
43 if t=0 then
44 Cm+1, Tm+1 = M(Cm, Tm, feats)

45 ISR
n = Itn
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In addition, compared to synthetic datasets, videos captured in real-world scenarios display more
complex and unknown degradation processes. Although real-world VSR is garnering significant
attention, it remains an unexplored treasure and a steep summit to conquer for diffusion-based VSR,
including SeeClear.

Significantly, substituting an Autoencoder with a traditional wavelet transform lessens the computa-
tional burden while ensuring the preservation of the original input information. Nevertheless, in the
process of inverse wavelet transform, the spatio-temporal information within videos is not delved
into further, leading to subpar outcomes. Meanwhile, some methods develop trainable wavelet-like
transformations based on the lifting scheme, allowing for end-to-end training of the whole network.
Such a schema presents a promising direction for future research by potentially boosting model
performance.

As for societal impacts, similar to other restoration methods, SeeClear may bring privacy concerns
after restoring blurry videos and lead to misjudgments if used for medical diagnosis and intelligent
security systems, etc.
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